

UTP A DUR 350

solid wire

Classifications								
EN 14700		DIN 8555		Material-No.				
SZ Fe 2		MSG 2-GZ-400		1.8405				
Characteristics and field of use								
UTP A DUR 350 is suited for MAG buildups on structural parts subject to compression, impact and abrasion, such as caterpillar track components, machine and gear parts, stamps.								
The weld deposit of UTP A DUR 350 may be soft annealed and hardened. Post-weld machining by grinding is possible.								
Hardness of the pure weld deposit :								
untreated approx. 450 HB hardened 820 – 850 °C/oil approx. 62 HRC								
soft annealed 720 – 740 °C approx. 200 HB								
1 layer on non-alloyed steel approx. 350 HB								
Typical analysis in %								
С	Si	Mn	Cr	Ti	Fe			
0.7	0.3	2.0	1.0	0.2	balance			
Welding instruction								
Machine welding area has to be metallic bright. Massive parts have to be preheated to $200 - 300 ^{\circ}\text{C}$.								

Wire diameter [mm]	Current type	Shielding gas (EN ISO 14175)		
1.0	DC (+)	M 12	M 13	M 21
1.2	DC (+)	M 12	M 13	M 21