

Welding & Cutting Catalogue

Automotive, commercial vehicles and construction machinery

innovative welding and cutting technology.

www.esab.com

protection equipment for welder safety.

Contents

	page	ķ	oage
World leader in welding and cutting technology systems	4	TXH™ TIG Torches	47
Consumables selector for light vehicles	8	Manual plasma cutting equipment - plasma cutting packages	s 48
Consumables selector for two wheelers	10	Manual plasma cutting equipment - PowerCut™ 400/700	49
Consumables selector for trucks, trailers and buses	12	Manual plasma cutting equipment Plasma cutting packages	50
Consumables selector for industrial vehicles/		Welding automation - components and modules	51
earth moving equipment	14	Welding automation - power sources	53
A choice of welding equipment	17	Welding automation - column and boom / gantries	54
Solid wires for mild steel	18	Welding automation - engineering	55
Cored wires for mild steel	20	Aristo® MIG robot packages	56
Solid wires for low alloyed steel	21	Aristo® packages for hollow wrist robots	57
Cored wires for ferritic stainless steel	23	Aristo® packages for non hollow wrist robots	58
Solid wires for austenitic stainless steel	25	Aristo®-RT robotic torches and accessories	59
Cored wires for austenitic stainless steel	27	Robotic torches Aristo®-RT tandem torch,	
Solid wire for nickel based materials	28	cleaning devices and safety switches	60
Solid wires for aluminium alloys	29	ESAB special welding processes - SATTM	61
Solid wires for copper based materials	31	ESAB special welding processes - QSet™	62
Fluxes for submerged arc welding	32	ESAB special welding processes - SuperPulse™	63
Solid/cored wires for hardfacing	35	ESAB special welding processes - Hybrio™ laser	
400A CC/CV construction model multi-process inverter	37	hybrid technology	64
MIG/MAG equipment - power sources and wire feeders	38	ESAB special welding processes - 2D and 3D friction	
MIG/MAG equipment - compact inverters	39	stir welding machines and robots	65
TIG equipment - DC Inverters and AC/DC Inverters	40	Your complete cutting solution from the same supplier	66
MIG/MAG equipment - inverters and choppers	41	Personal protective equipment	68
MIG/MAG equipment - semi-automats, inverters	42	Special Marathon Pac and wire feeding accessories	70
MIG/MAG equipment - Aristo® RoboFeed 3004HW	43	SMART labels	72
MIG/MAG equipment - analogue choppers and wire feeders	44	Product documents	73
MIG/MAG equipment - digital choppers and wire feeders	45	ESAB productivity audits	74
MIG/MAG equipment - MIG torches	46	R&D, Central Laboratory and Process Centres	75

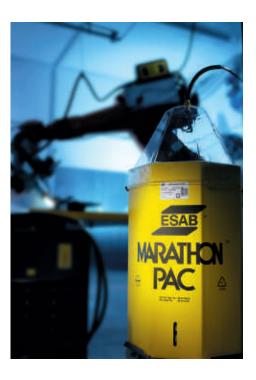
DISCLAIMER

Whilst all reasonable efforts have been made to ensure the accuracy of the information contained in this handbook at the time of going to press, ESAB gives no warranty with regard to its accuracy or completeness. It is the responsibility of the reader to check the accuracy of the information contained in this handbook, read product labels and equipment instructions and comply with current regulations. If the reader is in any doubt with regard to the proper use of any technology they should contact the manufacturer or obtain alternative expert advice. ESAB accepts no responsibility or liability for any injury, loss or damage incurred as a result of any use or reliance upon the information contained in this handbook.

World leader in welding and cutting technology systems

ESAB operates at the forefront of welding and cutting technology. Over one hundred years of continuous improvement in products and processes enables us to meet the challenges of technological advances in every sector in which ESAB operates.

Quality and environment standards


Quality, the environment and safety are three key areas of focus. ESAB is one of few international companies to have achieved the ISO 14001 and OHSAS 18001 standards in Environmental, Health & Safety Management Systems across all our global manufacturing facilities.

At ESAB, quality is an ongoing process that is at the heart of all our production

processes and facilities worldwide.

Multinational manufacturing, local representation and an international network of independent distributors brings the benefits of ESAB quality and unrivalled expertise in materials and processes within reach of all our customers, wherever they are located.

Welding consumables

- Globally available, vast range of high productivity welding consumables covering all applications.
- Consistent high quality.
- Productive, environmentally-friendly packaging solutions.
- Consumables innovations such as AristoRod™ with Advanced Surface Characteristics.
- Most of the range produced in house: own development, metallurgy skills, QA.
- Production standards rigorously proved and tested to meet customer requirements.
- Full range of accessories to connect consumables to machines.
- · Approved by major approval societies.

Equipment

- Large variety of equipment designed for anything from mass production to repair and maintenance.
- All arc welding processes relevant to the segment.
- Designed for semi-automation and automation. High and low end mechanised semi-automation.
- Integration into robotic environment.
- Various degrees of freedom to adjust optimum process.
- User friendly controls.
- Reduced energy consumption.
- Smart welding processes such as SuperPulse™, SAT™ and QSet™.
- Smart technology for consistent quality, long product life (durability).

Automation & robotics integration

- Complete welding solutions for different customer needs.
- Full range of processes from MIG/MAG to SAW.
- Easy to integrate field bus interfaces.
- Reduced downtime in production due to smart designs.
- Packaging solutions for continuous, high duty cycle welding.

World leader in welding and cutting technology systems

Cutting

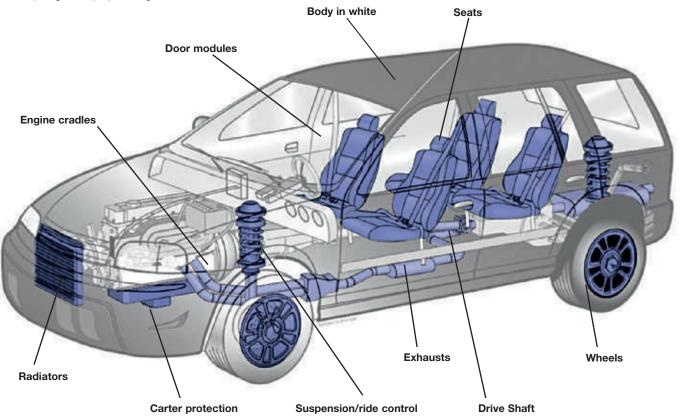
- Cutting machines from 2 to 36m machine width.
- Filter systems.
- Cutting tables.
- Plasma system solutions from 1 to 120mm cutting thickness.
- Specialised cutting software and easy to operate CNC controls.
- High duty oxyfuel cutting equipment.
- Tools for automated weld-edge preparation.

Personal protection equipment

- Full range of personal protection equipment.
- Complying to and exceeding the relevant standards.
- Specifications of welding glasses fullfil advanced optical requirements.
- UV and IR filtering.

Consumables selector for light vehicles

Cars ⋅ vans ⋅ light trucks


B ₀₀ .	Door White	Engli, modules	Exhair Gadles	A adj.	Sustors	W. Sion	A	S. 94.	Se Droi Shaft	To. Section	College College	Son Topais Carri	S.A.
												Page	
х	х	х	x		x	x	x	x	x	x	х	18	
x	х	x	x		x	x	x	×	x	x	x	18	
x	х	x	x		x	x	x	×	x	x	x	18	
	l	ĺ	İ			l	l						

				\$	9	4	A.	Ø.	Öz	Z	4	C	8	2 1	S C	,
Solid wires mild steel	AWS A5.18	EN ISO 14341	Mat. nr													Page
OK AristoRod 12.50	ER70S-6	G3Si1	1.5125	x	х	х	х		х	х	х	x	x	х	x	18
OK Autrod 12.51	ER70S-6	G3Si1	1.5125	x	х	x	х		х	x	х	x	x	x	x	18
OK AristoRod 12.63	ER70S-6	G4Si1	1.5130	x	х	x	x		х	x	х	x	x	x	x	18
OK Autrod 12.64	ER70S-6	G4Si1	1.5130	x	х	x	х		х	x	х	x	x	x	x	18
		EN ISO 636-A														
OK Tigrod 12.60	ER70S-3	W2Si		×	х	x	х		х	x	x	×	x	x	x	19
OK Tigrod 12.64	ER70S-6	W4Si-1	1.5130	x	х	x	х		х	x	x	x	x	x	x	19
Cored wires mild steel	AWS A5.18	EN ISO 17632-A	Mat. nr													
OK Tubrod 14.11	E70C-6M H4	T 42 4 M M 3 H5		x	х	x	х		х	х	х	x		х		20
OK Tubrod 14.13	E70C-6M	T 42 2 M M 2 H5				x					х	x				20
Coreweld 46LS	E70C-6M H4	T 46 4 M M 2 H5		x	х	х	х		х	х	x	x		х		20
Solid wires low alloyed	AWS A5.28	EN ISO 16834-A	Mat. nr													
OK AristoRod 13.12	ER80S-G	GCrMo1Si (EN ISO 21952-A)	1.7339						x							21
OK AristoRod 55	ER100S-G	G Mn3NiCrMo	1B13	х	x	x			x	x	x		×	x	x	21
OK AristoRod 69	ER110S-G	G Mn3Ni1CrMo	1B29	x	х	x			х	x	x		x	х	x	21
OK AristoRod 79	ER120S-G	G Mn4Ni2CrMo	1B31	×	х	x			х	x	x		x	x	x	22
OK AristoRod 89	ER120S-G	G Mn4Ni2CrMo	1B96	×	х	x			х		x		x	x	x	22
OK Tigrod 13.16	ER80S-B2			x	х	х			х		х		x	х		22
Cored wires ferritic	AWS A5.9		Mat. nr													
Arcaloy MC409Ti	EC409						х									23
Arcaloy MC409Nb	EC409Nb						х									23
Arcaloy MC439Ti	EC439						х									23
Arcaloy MC18CrCb							х									23
Solid wires ferritic	AWS A5.9	EN ISO 14343-A	Mat.nr													
OK Autrod 430LNbTi				1												~ 4
J		G Z 18 LNbTi					х									24
OK Autrod 430LNb		G Z 18 LNbTi G Z 17 LNb	1.4511				x x									24
			1.4511 1.4502													1
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti		G Z 17 LNb					x									24 24 24
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb	ER409Nb	G Z 17 LNb G Z 17 Ti W Z 17 Ti	1.4502 1.4502				x x									24 24
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic	ER409Nb AWS A5.9	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A	1.4502 1.4502 Mat. nr				x x x									24 24 24 24 24
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95	AWS A5.9	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn	1.4502 1.4502 Mat. nr 1.4370				x x x x							x		24 24 24 24 24
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 308LSi	AWS A5.9 ER308LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi	1.4502 1.4502 Mat. nr 1.4370 1.4316				x x x x							x x		24 24 24 24 24 25 25
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 308LSi OK Autrod 309LSi	AWS A5.9 ER308LSi ER309LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi G 23 12 LSi	1.4502 1.4502 Mat. nr 1.4370 1.4316 1.4332	x	×		x x x x x x x				×				x	24 24 24 24 25 25 25
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 308LSi OK Autrod 309LSi OK Autrod 316LSi	AWS A5.9 ER308LSi ER309LSi ER316LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi G 23 12 LSi G 19 12 3 LSi	1.4502 1.4502 Mat. nr 1.4370 1.4316 1.4332 1.4430	x	×		x x x x x x x x				x			x x	x	24 24 24 24 25 25 25 25
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 308LSi OK Autrod 309LSi OK Autrod 316LSi OK Tigrod 308LSi	AWS A5.9 ER308LSi ER309LSi ER316LSi ER308LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi G 23 12 LSi G 19 12 3 LSi W 19 9 LSi	1.4502 1.4502 Mat. nr 1.4370 1.4316 1.4332 1.4430 1.4316	x	×		x x x x x x x x				x			x	x	24 24 24 24 25 25 25 25 25 26
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 308LSi OK Autrod 309LSi OK Autrod 316LSi OK Tigrod 316LSi	AWS A5.9 ER308LSi ER309LSi ER316LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi G 23 12 LSi G 19 12 3 LSi W 19 9 LSi W 19 12 3 LSi	1.4502 1.4502 Mat. nr 1.4370 1.4316 1.4332 1.4430 1.4316 1.4430	x	x		x x x x x x x x				x			x x	x	24 24 24 24 25 25 25 25
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 309LSi OK Autrod 309LSi OK Autrod 316LSi OK Tigrod 316LSi OK Tigrod 316LSi Cored wires austenitic	AWS A5.9 ER308LSi ER309LSi ER316LSi ER308LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi G 23 12 LSi G 19 12 3 LSi W 19 9 LSi W 19 12 3 LSi	1.4502 1.4502 Mat. nr 1.4370 1.4316 1.4332 1.4430 1.4316	×	x		x x x x x x x x x x x x x x x x x x x				x			x x	x	24 24 24 24 25 25 25 25 26 26
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 308LSi OK Autrod 309LSi OK Autrod 316LSi OK Tigrod 316LSi Cored wires austenitic OK Tubrod 15.30	AWS A5.9 ER308LSi ER309LSi ER316LSi ER308LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi G 23 12 LSi G 19 12 3 LSi W 19 9 LSi W 19 12 3 LSi EN ISO 17633-A T 19 9 L M M 2	1.4502 1.4502 Mat. nr 1.4370 1.4316 1.4332 1.4430 1.4316 1.4430	x	x		x x x x x x x x x x x x x x x x x x x				x			x x	x	24 24 24 24 25 25 25 25 26 26 27
OK Autrod 430LNb OK Autrod 430Ti OK Tigrod 430Ti OK Autrod 409Nb Solid wires austenitic OK Autrod 16.95 OK Autrod 308LSi OK Autrod 309LSi OK Autrod 316LSi OK Tigrod 316LSi OK Tigrod 316LSi Cored wires austenitic	AWS A5.9 ER308LSi ER309LSi ER316LSi ER308LSi	G Z 17 LNb G Z 17 Ti W Z 17 Ti EN 14343-A G 18 8 Mn G 19 9 LSi G 23 12 LSi G 19 12 3 LSi W 19 9 LSi W 19 12 3 LSi	1.4502 1.4502 Mat. nr 1.4370 1.4316 1.4332 1.4430 1.4316 1.4430	x	x		x x x x x x x x x x x x x x x x x x x				x		x	x x	×	24 24 24 24 25 25 25 25 26 26

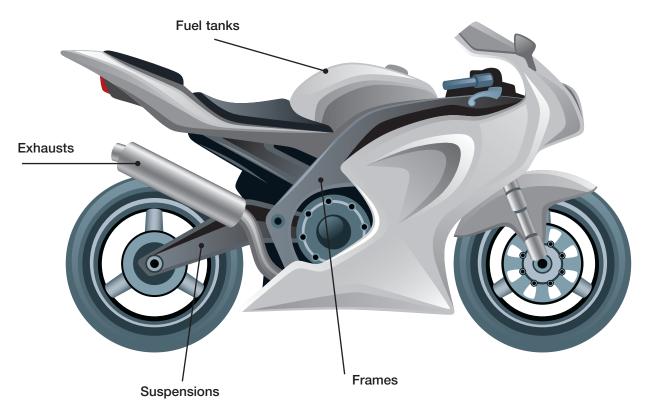
5 B
Soy, in white from the state of

Solid wires nickel based	AWS 5.14	EN ISO 18274	Mat. nr													Page
OK Autrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831				x									28
OK Autrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806				Х									28
OK Tigrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831				x									28
OK Tigrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806				x									28
Solid wires aluminium	AWS A5.10	EN ISO 18273	Mat. nr													
OK Autrod 5183 (OK Tigrod 5183)	ER5183	S AI 5183	3.3548	x	х							х		х		29
		(AIMg4.5Mn0.7(A))														
OK Autrod 5356 (OK Tigrod 5356)	ER5356	S AI 5356 (AIMg5Cr(A))	3.3556	x		x			х			x	х	х		29
OK Autrod 5554 (OK Tigrod 5554)	ER5554	AIMg3Mn(A)	3.3537	×		x				x				х		30
OK Autrod 4043 (OK Tigrod 4043)	ER4043	S AI 4043A (AISi5(A))	3.2245	x		x		x	х		x	x	x		x	29
OK Autrod 4047 (OK Tigrod 4047)	ER4047	S AI 4047A (AISi12(A))	3.2581	x	x			х	х			x			x	29
Solid wires copper based	AWS A5.7	EN ISO 24373	Mat. nr													
OK Autrod 19.30 (OK Tigrod 19.30)	ERCuSi-A	S Cu 6560(CuSi3Mn1)		x	х								х		х	31
OK Autrod 19.40 (OK Tigrod 19.40)	ERCuAl-A1	S Cu 6100 (CuAl8)		×	x		x						x		x	31
OK Autrod 19.41 (OK Tigrod 19.41)		S Cu 6327 (CuAl8Ni2)		x	x		x									31
OK Autrod CuSi laser	ERCuSi-A	S Cu 6560 (CuSi3Mn1)		×												31
				1	1	1	1	I	1	1	l .	I	1	1	1	1

(OK Tigrod XXXX): equivalent Tigrod available.

Consumables selector for two wheelers

Motorcycles · quads · snowmobiles · scooters · mopeds


rane construction
Extra usis
Tue tants
Suspaysion

				•	•	•	•	
Solid wires mild steel	AWS A5.18	EN ISO 14341	Mat. nr					Page
OK AristoRod 12.50	ER70S-6	G3Si1	1.5125	х	x	х	х	18
OK Autrod 12.51	ER70S-6	G3Si1	1.5125	x	x	x	x	18
OK AristoRod 12.63	ER70S-6	G4Si1	1.5130	х	x	x	x	18
OK Autrod 12.64	ER70S-6	G4Si1	1.5130	x	×	x	x	
		EN ISO 636-A						
OK Tigrod 12.60	ER70S-3	W2Si		х	x	x	х	19
OK Tigrod 12.64	ER70S-6	W4Si-1	1.5130	х	x	x	х	19
Cored wires mild steel	AWS A5.18	EN ISO 17632-A	Mat. nr					
OK Tubrod 14.11	E70C-6M H4	T 42 4 M M 3 H5					x	20
OK Tubrod 14.13	E70C-6M	T 42 2 M M 2 H5						20
Coreweld 46LS	E70C-6M H4	T 46 4 M M 2 H5		x	x	x	x	20
Solid wires low alloyed	AWS A5.28	EN ISO 16834-A	Mat. nr					
OK AristoRod 13.12	ER80S-G	GCrMo1Si (EN ISO 21952-A)	1.7339	x			x	21
OK AristoRod 55	ER100S-G	G Mn3NiCrMo	1B13	x			x	21
OK AristoRod 69	ER110S-G	G Mn3Ni1CrMo	1B29	x			x	21
OK AristoRod 79	ER120S-G	G Mn4Ni2CrMo	1B31	x			x	22
OK AristoRod 89	ER120S-G	G Mn4Ni2CrMo	1B96	x			x	22
OK Tigrod 13.16	ER80S-B2			x			x	22
Cored wires ferritic	AWS A5.9		Mat. nr		1			
Arcaloy MC409Ti	EC409		-		x			23
Arcaloy MC409Nb	EC409Nb		-		×			23
Arcaloy MC439Ti	EC439		-		x			23
Arcaloy MC18CrCb			-		x			23
Solid wires ferritic	AWS A5.9	EN ISO 14343-A	Mat. nr					
OK Autrod 430LNbTi		G Z 18 LNbTi			x			24
OK Autrod 430LNb		G Z 17 LNb	1.4511		x			24
OK Autrod 430Ti		G Z 17 Ti	1.4502		x			24
OK Tigrod 430Ti		W Z 17 Ti	1.4502		x			24
Solid wires austenitic	AWS A5.9	EN 14343-A	Mat. nr					
OK Autrod 16.95		G 18 8 Mn	1.4370	x	x		x	25
OK Autrod 308LSi	ER308LSi	G 19 9 LSi	1.4316		x			25
OK Autrod 309LSi	ER309LSi	G 23 12 LSi	1.4332		x			25
OK Autrod 316LSi		G 19 12 3 LSi	1.4430		x			25
0117144104 010201	ER316LSi	G 10 12 0 201					1	1
OK Tigrod 308LSi	ER316LSi ER308LSi	W 19 9 LSi	1.4316		x			26
			1.4316 1.4430		x x			26 26
OK Tigrod 308LSi	ER308LSi	W 19 9 LSi			x x			
OK Tigrod 308LSi OK Tigrod 316LSi	ER308LSi	W 19 9 LSi W 19 12 3 LSi	1.4430		x x			
OK Tigrod 308LSi OK Tigrod 316LSi Cored wires austenitic	ER308LSi	W 19 9 LSi W 19 12 3 LSi EN ISO 17633-A	1.4430					26

Fame construction Establesis Fuel tanke Suspansion

Solid wire nickel based	AWS 5.14	EN ISO 18274	Mat. nr					Page
OK Autrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831		x			28
OK Autrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806		x			28
OK Tigrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831		x			28
OK Tigrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806		×			28
Solid wires aluminium	AWS A5.10	EN ISO 18273	Mat. nr	-	1			
OK Autrod 5183 (OK Tigrod 5183)	ER5138	S Al 5183 (AlMg4.5Mn0.7(A))	3.3548	х		х	x	29
OK Autrod 5356 (OK Tigrod 5356)	ER5356	S AI 5356 (AIMg5Cr(A))	3.3556	x		x	x	29
OK Autrod 5554 (OK Tigrod 5554)	ER5554	AIMg3Mn(A)	3.3537					30
OK Autrod 4043 (OK Tigrod 4043)	ER4043	S AI 4043A (AISi5(A))	3.2245	x	x	x	x	29
OK Autrod 4047 (OK Tigrod 4047)	ER4047	S AI 4047A (AISi12(A))	3.2581		x	x		29
Solid wires copper based	AWS A5.7	EN ISO 24373	Mat. nr					
OK Autrod 19.30 (OK Tigrod 19.30)	ERCuSi-A	S Cu 6560(CuSi3Mn1)				x		31
OK Autrod 19.40 (OK Tigrod 19.40)	ERCuAl-A1	S Cu 6100 (CuAl8)		x		x		31
OK Autrod 19.41 (OK Tigrod 19.41)		S Cu 6327 (CuAl8Ni2)		x				31
				1	l	l		I

(OK Tigrod XXXX): equivalent Tigrod available.

Consumables selector for trucks, trailers and buses

one of the state o	Sherks
** ***********************************	ss, drive
	or tonks
Charles of the Charle	Solution of the solution of th

					*	_	~	•		_		_	`	`	_	•	_	_	•	-	_	_	`	
Solid wires mild steel	AWS A5.18	EN ISO 14341	Mat. nr					Trucl	ks an	d tra	ailers							Е	Buse	s				Page
OK AristoRod 12.50	ER70S-6	G3Si1	1.5125	x	x	х	х	х	х	х	x	x)	<	х	х	х	х	х	х	х	х		х	18
OK Autrod 12.51	ER70S-6	G3Si1	1.5125	x	x	x	х	х	x	х	x	x >	<	х	x	х	х	х	х	x	х		х	18
OK AristoRod 12.63	ER70S-6	G4Si1	1.5130	x	x	x	х	х	x	х	x	x >	۲	х	x	х	x	х	х	x	х		х	18
OK Autrod12.64	ER70S-6	G4Si1	1.5130	x	x	x	х	х	x	х	x	x ;	<	х	x	х	x	х	х	x	х		х	18
		EN ISO 636-A																						
OK Tigrod 12.60	ER70S-3	W2Si		x	x	x	x	x	x	х	x	x ;	<	х	x	x	x	х	х	x	x		х	19
OK Tigrod 12.64	ER70S-6	W4Si-1	1.5130	x	x	x	x	x	x	х	x	x ;	<	х	x	x	x	х	х	x	x		х	19
Cored wires mild steel	AWS A5.18	EN ISO 17632-A	Mat. nr																					
OK Tubrod 14.11	E70C-6M H4	T 42 4 M M 3 H5		x	x	x	х	х	x	х	х	x :	ĸ	х	x	х	х	х	х	х	х		х	20
OK Tubrod 14.13	E70C-6M	T 42 2 M M 2 H5		x	x							,	ĸ		x	x					x			20
Coreweld 46LS	E70C-6M H4	T 46 4 M M 2 H5		x	x	x	x	x	x	х	x	x :	ĸ	х	×	х	x	х	х	x	x		х	20
Solid wires low alloyed	AWS A5.28	EN ISO 16834-A	Mat. nr																					
OK AristoRod 55	ER100S-G	G Mn3NiCrMo	1B13	x	x		х	х	x	х		x :	ĸ		x	х		х	х	х	х			21
OK AristoRod 69	ER100S-G	G Mn3Ni1CrMo	1B29	x	x		х	х	x	х		x :	ĸ		x	х		х	х	x	x			21
OK AristoRod 79	ER110S-G	G Mn4Ni2CrMo	1B31	x	x		х	х	x	х		x ;	ĸ		x	х		х	х	x	х			21
OK AristoRod 89	ER120S-G	G Mn4Ni2CrMo	1B96	x	x		х	х	x	х		x :	ĸ		×	х		х	х	x	x			21
OK Tigrod 13.16	ER80S-B2			x	x		x								x	х			х					21
Cored wires ferritic	AWS A5.9		Mat. nr																				· ·	
Arcaloy MC409Ti	EC409						х												х					23
Arcaloy MC409Nb	EC409Nb						x												х					23
Arcaloy MC439Ti	EC439						x												х					23
Arcaloy MC18CrCb							х												х					23
Solid wires ferritic	AWS A5.9	EN ISO 14343-A	Mat.nr																					
OK Autrod 430LNbTi		G Z 18 LNbTi					х												х					24
OK Autrod 430LNb		G Z 17 LNb	1.4511				х												х					24
OK Autrod 430Ti		G Z 17 Ti	1.4502				х												х					24
OK Tigrod 430Ti		W Z 17 Ti	1.4502				х												х					24
Solid wires austenitic	AWS A5.9	EN 14343-A	Mat. nr																					
OK Autrod 16.95		G 18 8 Mn	1.4370				х				х	x		х	x		x		х				х	25
OK Autrod 308LSi	ER308LSi	G 19 9 LSi	1.4316				х				x	x		x	×		x		х			х	х	25
OK Autrod 309LSi *	ER309LSi	G 23 12 LSi	1.4332				x				x	x		x					х				х	25
OK Autrod 316LSi	ER316LSi	G19 12 3 LSi	1.4430				x				x	x		x					х				x	26
OK Tigrod 308LSi	ER308LSi	W 19 9 LSi	1.4316				x				x	x		х	×		x		х			х	x	26
OK Tigrod 316LSi	ER 316 LSi	W 19 12 3 LSi	1.4430				x				x	x		х					х				х	26
				1	1	1	1	1	1 1		1	- 1	1	1		1	1	- 1		1 1	1	- 1	- 1	

Silve States	Shorts
e ans exes, chiu, ts	Chassis Ergins Cobins and est areas Extractes to the states Wheels They take
C. Paris, strains, st	1.3
Constant of the constant of th	

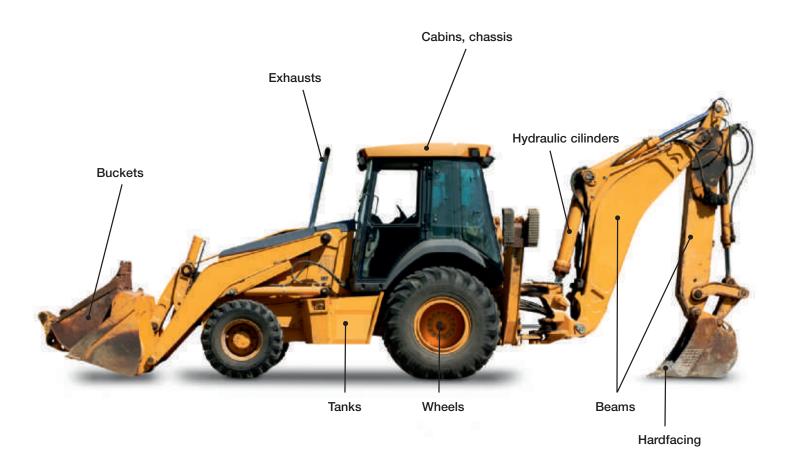
Cored wires austenitic		EN ISO 17633-A	Mat.nr					Trucl	ks an	nd tra	ailers								В	uses	S				Page
Ok Tubrod 15.30		T 19 9 L M M 2	-				х				х	х] ;	x		х		х				х	27
OK Tubrod 15.31		T 19 12 3 L M M 2	-				х				x	х			١					x				х	27
OK Tubrod 15.34		T 18 8 Mn M 2	-				x				х	х				x		x		х				х	27
Solid wires nickel based	AWS 5.14	EN ISO 18274	Mat. nr																						
OK Autrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831				х				x									х					28
OK Autrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806				х				×									х					28
OK Tigrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831				х				x									х					28
OK Tigrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806				х				x									x					28
Solid wires aluminum	AWS A5.10	EN ISO 18273	Mat. nr																						
OK Autrod 5183 (OK Tigrod 5183)	ER5183	S AI 5183 (AIMg4.5Mn0.7(A)	3.3548	х	x	x		х			x	х)	x :	x	х	x					х	х	29
OK Autrod 5356 (OK Tigrod 5356)	ER5356	S AI 5356 (AIMg5Cr(A))	3.3556	х	x	x		х		х		х		,	x :	x	х	x	х				х	х	29
OK Autrod 5554 (OK Tigrod 5554)	ER5554	AIMg3Mn(A)	3.3537								x														30
OK Autrod 4043 (OK Tigrod 4043)	ER4043	S AI 4043A (AISi5(A))	3.2245			x	х	х	x			х	,		x			x		x				х	29
OK Autrod 4047 (OK Tigrod 4047)	ER4047	S AI 4047A (AISi12(A))	3.2581			х)	()	x			х						х	29
Solid wires copper based	AWS A5.7	EN ISO 24373	Mat. nr																						
OK Autrod 19.30 (OK Tigrod 19.30)	ERCuSi-A	S Cu 6560(CuSi3Mn1)				×												x			x				31
OK Autrod 19.40 (OK Tigrod 19.40)	ERCuAl-A1	S Cu 6100 (CuAl8)																							31
OK Autrod 19.41 (OK Tigrod 19.41)		S Cu 6327 (CuAl8Ni2)					х													x					31
OK Autrod CuSi laser	ERCuSi-A	Cu 6560 (CuSi3Mn1)																x							
SAW Flux	AWS	EN ISO 24373	Basicity index																						
OK Flux 10.61		SA FB 1 65 DC	2.6																						32
OK Flux 10.71		SA AB 1 67 AC H5	1.5	х	x			х																	32
OK Flux 10.76		SA AB 1 89 AC	1.5		x								x				х								33
OK Flux 10.81		SA AR 1 97 AC	0.6	х	x			х		х			x] :	x	х		х			х			33
OK Flux 10.87		EN 760: SA AR 1 95 AC	0.4	х				х		x		х	x		;	x	х		х			х			34

(OK Tigrod XXXX): equivalent Tigrod available.

Consumables selector for industrial vehicles/earth moving equipment

Construction • Earthmoving • Argicultural • Forrestry • Mining Equipment

					3/4/8°	ts only su	.allic .	tanks.		ciling	\$ 0 P	
				S.	\$ 100 miles	Fuel	N X	Step 1979	Se TON	N. Sullic	B _{B,2}	
Solid wires mild steel	AWS A5.18	EN ISO 14341	Mat. nr						ı	ı		Page
OK AristoRod 12.50	ER70S-6	G3Si1	1.5125	×	X	X	×	×	х	x	×	18
OK Autrod 12.51	ER70S-6	G3Si1	1.5125	×	X	X	×	×	X	x	X	18
OK AristoRod 12.63	ER70S-6	G4Si1	1.5130	×	X	X	×	X	X	x	X	18
OK Autrod 12.64	ER70S-6	G4Si1	1.5130	×	X	X	×	x	х	x	×	18
		EN ISO 636-A										
OK Tigrod 12.60	ER70S-3	W2Si		×	x	x	×		x	x	×	19
OK Tigrod 12.64	ER70S-6	W4Si-1	1.5130	x	х	x	×		x	x	x	19
Cored wires mild steel	AWS A5.18	EN ISO 17632-A	Mat. nr							,	ļ.,	
OK Tubrod 14.11	E70C-6M H4	T 42 4 M M 3 H5		×	x	x	×	x	x	x	x	20
OK Tubrod 14.13	E70C-6M	T 42 2 M M 2 H5		×		x		x	x	x	x	20
Coreweld 46LS	E70C-6M H4	T 46 4 M M 2 H5		x	х	х	x	x	х	x	x	20
Solid wires low alloyed	AWS A5.28	EN ISO 16834-A	Mat. nr									
OK AristoRod 13.12	ER80S-G	GCrMo1Si (EN ISO 21952-A)	1.7339	x	x	x		x	x	x	x	21
OK AristoRod 55	ER100S-G	G Mn3NiCrMo	1B13	x	x	x		x	х	x	x	21
OK AristoRod 69	ER110S-G	G Mn3Ni1CrMo	1B29	×	x	x		x	x	x	x	21
OK AristoRod 79	ER120S-G	G Mn4Ni2CrMo	1B31	×	x	x		x	x	x	x	22
OK AristoRod 89	ER120S-G	G Mn4Ni2CrMo	1B96	×	x	x		×	x	x	×	22
OK Tigrod 13.16	ER80S-B2			×	x	x					×	22
Cored wires ferritic	AWS A5.9		Mat. nr									
Arcaloy MC409Ti	EC409						x					23
Arcaloy MC409Nb	EC409Nb						×					23
Arcaloy MC439Ti	EC439						×					23
Arcaloy MC18CrCb							×					23
Solid wires ferritic	AWS A5.9	EN ISO 14343-A	Mat.nr									
OK Autrod 430LNbTi		G Z 18 LNbTi	1.4509				x					24
OK Autrod 430LNb		G 18 LNb	1.4511				x					24
OK Autrod 430Ti		G Z 17 Ti	1.4502				x					24
OK Tigrod 430Ti		W Z 17 Ti	1.4502				×					24
Solid wires austenitic	AWS A5.9	EN 14343-A	Mat. nr									
OK Autrod 16.95		G 18 8 Mn	1.4370	×	x	×	х		х			25
OK Autrod 308LSi	ER308LSi	G 19 9 LSi	1.4316			x	x					25
OK Autrod 309LSi *	ER309LSi	G 23 12 LSi	1.4332			x	x					25
OK Autrod 316LSi	ER316LSi	G 19 12 3 LSi	1.4430			x	x					25
OK Tigrod 308LSi	ER308LSi	W 19 9 LSi	1.4316			x	x					26
OK Tigrod 316LSi	ER316LSi	W 19 12 3 LSi	1.4430			×	x					26


			4	S. S		700	Ö
9/8	چ	Fuellhui			? <u>.</u>	Wheels cilinder	, s
Chassis	Soling	T Non I	Exha,	Sic. Buckey	Z ^z zzo	Moo	Beams

				_		•	•	•	•		•	
Cored wires austenitic		EN ISO 17633-A	Mat.nr									Page
Ok Tubrod 15.30		T 19 9 L M M 2					x					27
OK Tubrod 15.31		T 19 12 3 L M M 2					×					27
OK Tubrod 15.34		T 18 8 Mn M 2			x		×		x			27
Solid wires nickel based	AWS 5.14	EN ISO 18274	Mat. nr									
OK Autrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831				x					28
OK Autrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806				×					28
OK Tigrod 19.82	ERNiCrMo-3	NiCr22Mo9Nb	2.4831				×					28
OK Tigrod 19.85	ERNiCr-3	NiCr20Mn3Nb	2.4806				×					28
Solid wires aluminum	AWS A5.10	EN ISO 18273	Mat. nr									
OK Autrod 5183 (OK Tigrod 5183)	ER5356	S AI 5356 (AIMg4.5Mn0.7(A))	3.3548		x	x						29
OK Autrod 5356 (OK Tigrod 5356)	ER5138	S AI 5183 (AIMg4,5Mn0,7)	3.3556		x	x						29
OK Autrod 5554 (OK Tigrod 5554)	ER5554	AIMg3Mn(A)	3.3537									30
OK Autrod 4043 (OK Tigrod 4043)	ER4043	S AI 4043A (AISi5(A))	3.2245		x	x	×					29
OK Autrod 4047 (OK Tigrod 4047)	ER4047	S AI 4047A (AISi12(A))	3.2581		х	x						29
Solid wires copper based	AWS A5.7	EN ISO 24373	Mat. nr									
OK Autrod 19.30 (OK Tigrod 19.30)	ERCuSi-A	S Cu 6560(CuSi3Mn1)			х							31
OK Autrod 19.40 (OK Tigrod 19.40)	ERCuAl-A1	S Cu 6100 (CuAl8)			х							31
OK Autrod 19.41 (OK Tigrod 19.41)		S Cu 6327 (CuAl8Ni2)			х		х					31
SAW flux	AWS	EN 760	Basicity index									
OK Flux 10.61		SA FB 1 65 DC	2.6	x		х		x	х	x		32
OK Flux 10.71		SA AB 1 67 AC H5	1.5	x				x	x	x		32
OK Flux 10.76		SA AB 1 89 AC	1.5									33
OK Flux 10.81		SA AR 1 97 AC	0.6	x					x	x		33
OK Flux 10.87		EN 760: SA AR 1 95 AC	0.4	x	х						x	33

(OK Tigrod XXXX): equivalent Tigrod available.

Bucker to oths Cape Week Siee hames Droder buckers

Solid/cored wires hardfacing	DIN	remarks					Page
OK Autrod 13.91	MSG-6-GZ-C-6	OG	-	-	х	х	35
OK Tubrodur 14.70	MF10-GF-55-GF	PTZ	x	-	-	-	35
OK Tubrodur 14.71	-	18.8.6Mn	-	-	х	x	35
OK Tubrodur 15.40	MF1-GF-350P		-	x	-	-	36
OK Tubrodur 15.52			-	-	х	x	36
OK Tubrodur 15.60	MF8-GF-200-G	KPR	-	-	х	x	36
OK Tubrodur 15.65	MF8-GF-200-G	KPR	-	-	х	x	36
OK Tubrodur 15.84	MF3-50-ST		х	-	-	-	36

A choice of welding equipment

Light vehicles

_			
GMAW	Page	GTAW	Page
Robotic welding		Robotic welding	55
Aristo® Mig 3001/5000 based robotic package	55	Aristo® Mig U5000 based robotic package	54
Origo™ Mig 4002/5002c based robotic package	55		
Hand welding		Hand welding	
Caddy® Mig C200i	39	Caddy® Tig 2200i with TA34	40
Origo™ Mig C3000i with MA24/U6	39	Caddy® Tig 2200i AC/DC with TA34 AC/DC	40
Aristo® Mig 3001/4001/5000i + AristoFeed 3004	42		
Origo™ Mig 4002/5002c + OrigoFeed 3004	38		

Commercial vehicles

GMAW	Page	GTAW	Page
Robotic welding		Robotic welding	
Aristo® Mig 3001/5000 based robotic package	54	Aristo® Mig U5000 based robotic package	56
Origo™ Mig 4002/5002c based robotic package	54		
Hand welding		Hand welding	
Caddy® Mig C200i	39	Caddy® Tig 2200i with TA34	40
Origo™ Mig C3000i with MA24/U6	39	Caddy® Tig 2200i AC/DC with TA34 AC/DC	40
Aristo® Mig 3001/4001/5000i + AristoFeed 3004			
Origo™ Mig 4002/5002c + OrigoFeed 3004	38		
Origo™ Mig 402/502c + OrigoFeed 304	44		

SAW	Page	Manual cutting/gauging	Page
Robotic/mechanised			
LAF 1001	51	PowerCut™ 700/900	47
PEK	49		
A2/A6 head	49, 50		
CaB 2200	52		
MechTrac	52		
Beam welder	53		

Industrial vehicles

GMAW	Page	GTAW	Page
Robotic welding		Robotic welding	
Aristo® Mig 5000 based robotic package	55	Aristo® Mig U5000 based robotic package	55
Origo™ Mig 5002/6502c based robotic package	55		
Hand welding:			
Caddy® Mig C200i	39		
Origo™ Mig C3000i with MA24/U6	39		
Aristo® Mig 3001/4001/5000i + AristoFeed 3004			
Origo™ Mig 4002/5002/6502c + OrigoFeed 4804	38		
Origo™ Mig 402/502/652c + OrigoFeed 304/484	44		

SAW	Page	Manual cutting/gouging	Page
Robotic/mechanised			
LAF 1001	51	PowerCut™ 700/900/1600	47, 48
PEK	49	ESP 150	46
A2/A6 head	49, 50	ESP 150 Deuce Pack	46
CaB 2200	52		
MechTrac	52		
Beam welder	53		

Solid wires for mild steel

	Classifications & approvals				31			
OK AristoRod 12.50		С	Si	Mn	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Type Non-copper coated	SFA/AWS A5.18: ER70S-6 EN ISO 14341-A: G3Si1 Weld metal classification EN ISO 14341-A: G 38 2 C1 3Si1	0.1	0.9	1.5	470	560	26	(+20/130) (-20/90)
	EN ISO 14341-A: G 42 4 M21 3Si1	1						(-30/70)
Polarity DC+	ABS, BV, CE, CWB, DB, DNV,	, GL, LR, I	PRS, RS, Vd	TÜV, NAKS				
Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm) 0.8 to 1.6	OK AristoRod™ 12.50 is a non- used in general construction, a AristoRod family of wires treated ing operations to new levels of features include excellent start at high welding currents, extre against corrosion of the wire. I wires provides trouble-free we	automotive ed with ES of perform t propertie mely low I Together w	e component SAB's revolut sance and all es, trouble-fre levels of spat with the environ	s, pressure vesse ionary Advanced round efficiency, e feeding at high ter, low fume emis onmentally-friendl	el fabrication and Surface Charact especially in rob- wire speeds and ssion, reduced co	shipbuilding. I eristics (ASC) otic and mech lengthy feed contact tip wear	t belongs to the technology, tak anised welding distances, a ver r and improved	e unique OK ing MAG wel . Characteris y stable arc protection
	Classifications & approvals	Chemic	al compositic	n wire/rod (%)	Typical mech	anical propertie	s (M21)	
OK Autrod 12.51		С	Si	Mn	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
ype Copper coated	SFA/AWS A5.18: ER70S-6 EN ISO 14341-A: G3Si1 Weld metal classification EN ISO 14341-A: G 38 2 C1 3Si1	0.1	0.9	1.5	470	560	26	(+20/130) (-20/90) (-30/70)
	EN ISC 14.341-A (5.42.4 M21.3511							
DC+ Shielding gas	EN ISO 14341-A: G 42 4 M21 3Si1 ABS, BV, CE, DB, DNV, GL, LI OK Autrod™ 12.51 is ESAB's and cleanliness, in combination	R, PRS, R	quality copp	er-coated MAG w	•	•		
Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm)	ABS, BV, CE, DB, DNV, GL, LI OK Autrod™ 12.51 is ESAB's	R, PRS, R premium on with a cer flakes, one tween cle	quality copp continuous c compared w eaning and r	er-coated MAG wopper-layer with outling the low cost MAG naintenance inter	optimum thickne wires. It guaran vals and provide	ss, results in r tees longer pe s an excellent	educed contar riods of low fo weld quality.	nination of
Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm)	ABS, BV, CE, DB, DNV, GL, LI OK Autrod™ 12.51 is ESAB's and cleanliness, in combinatic the feeding system with coppe arc stability and low spatter be	R, PRS, R premium on on with a cer flakes, of etween closurefully co	quality copp continuous c compared w eaning and r introlled for c	er-coated MAG wopper-layer with outling the low cost MAG naintenance inter	optimum thickne wires. It guaran vals and provide mechanical prop	ss, results in r tees longer pe s an excellent	educed contar eriods of low fo weld quality. reld.	nination of
Schielding gas CO_2 , Ar/ CO_2 mixed gases size (mm) .6 to 2.0	ABS, BV, CE, DB, DNV, GL, LI OK Autrod™ 12.51 is ESAB's and cleanliness, in combination the feeding system with copper arc stability and low spatter be The chemistry of the wire is car	R, PRS, R premium on on with a cer flakes, of etween closurefully co	quality copp continuous c compared w eaning and r introlled for c	er-coated MAG wopper-layer with opper-layer with open made internance internance internances interna	optimum thickne wires. It guaran vals and provide mechanical prop	ss, results in r tees longer pe s an excellent erties of the w	educed contar eriods of low fo weld quality. reld.	nination of rce feeding,
Shielding gas CO_2 , Ar/CO_2 mixed gases Size (mm) CO_2 in the first of the control of the	ABS, BV, CE, DB, DNV, GL, LI OK Autrod TM 12.51 is ESAB's and cleanliness, in combination the feeding system with coppe are stability and low spatter be. The chemistry of the wire is case. Classifications & approvals SFA/AWS A5.18: ER70S-6 EN ISO 14341-A: G4Si1 Weld metal classification EN ISO 14341-A: G 42 2 C1 4Si1	PRS, R. premium of the premium of t	quality copp continuous c compared w eaning and r entrolled for c	er-coated MAG wopper-layer with out the low cost MAG naintenance interconsistently high rousistently high wire/rod (%)	optimum thickne i wires. It guaran vals and provide mechanical prop Typical mech	ss, results in r tees longer pe is an excellent erties of the w	educed contar rriods of low fo weld quality. reld. es (M21)	nination of rce feeding,
Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm) 0.6 to 2.0 OK AristoRod 12.63 Type Non-copper coated	ABS, BV, CE, DB, DNV, GL, LI OK Autrod TM 12.51 is ESAB's and cleanliness, in combination the feeding system with coppe are stability and low spatter be. The chemistry of the wire is care. Classifications & approvals SFA/AWS A5.18: ER70S-6 EN ISO 14341-A: G4Si1 Weld metal classification EN ISO 14341-A: G 42 2 C1 4Si1 EN ISO 14341-A: G 46 4 M21 4Si1	PR, PRS, R premium of promiting a construction with a construction	quality copp continuous c compared w eaning and r introlled for c al composition	er-coated MAG wopper-layer with opper-layer with opper-layer with opper-layer with opper-layer manager interconsistently high opper-layer manager in wire/rod (%) Mn 1.7	optimum thickne i wires. It guaran vals and provide mechanical prop Typical mech R _{po2} (MPa)	ss, results in r tees longer pe is an excellent erties of the w nanical propertic Rm (MPa)	educed contar priods of low fo weld quality. peld. pes (M21) A4/A5 (%)	CVN (°C/J) (+20/130) (-20/90)
Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm) 0.6 to 2.0 OK AristoRod 12.63 Type Non-copper coated Polarity DC+ Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm)	ABS, BV, CE, DB, DNV, GL, LI OK Autrod TM 12.51 is ESAB's and cleanliness, in combination the feeding system with coppe are stability and low spatter be. The chemistry of the wire is case. Classifications & approvals SFA/AWS A5.18: ER70S-6 EN ISO 14341-A: G4Si1 Weld metal classification EN ISO 14341-A: G 42 2 C1 4Si1	R, PRS, R premium of the premium of	quality copperentinuous compared we eaning and rentrolled for controlled for cont	er-coated MAG wopper-layer with opper-layer with opper-layer with opper-layer with opper-layer with opper-layer with low cost MAG naintenance interconsistently high removed (%) Mn 1.7 Si-alloyed G4Si1/nts, pressure ves 12.50 to increase wooth, sound w, taking MAG we ding. Characterisces, a very stable	eptimum thickne wires. It guarant vals and provide mechanical properties of the weld welds. OK Aristofilding operations tic features inclusive arc at high well	ss, results in ratees longer person an excellent erties of the wateries of the GM and shipbuilding strength. This is to new levels de excellent siding currents,	educed contar viods of low fo weld quality. veld. SS (M21) A4/A5 (%) 26 AW of non- all g. It has a sligh also promotes eated with ESA of performanc tart properties extremely low	CVN (°C/J) (+20/130) (-20/90) (-30/70) oyed steels, tty higher a low B's unique e and allroung trouble-free
Polarity DC+ Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm) D.6 to 2.0 OK AristoRod 12.63 Type Non-copper coated Polarity DC+ Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm) D.8 to 1.6	ABS, BV, CE, DB, DNV, GL, LI OK Autrod TM 12.51 is ESAB's and cleanliness, in combination the feeding system with coppe are stability and low spatter by the chemistry of the wire is care Classifications & approvals SFA/AWS A5.18: ER70S-6 EN ISO 14341-A: G4Si1 Weld metal classification EN ISO 14341-A: G 42 2 C1 4Si1 EN ISO 14341-A: G 46 4 M21 4Si1 ABS, BV, DB, DNV, CE, CWB OK AristoRod TM 12.63 is a nor used in general construction, manganese and silicon contersensitivity to surface impuritie Advanced Surface Characteris efficiency, especially in robotic feeding at high wire speeds ar spatter, low fume emission, re	R, PRS, R premium of the premium of	quality copp continuous c compared we eaning and r introlled for controlled for controlled al composition Si 1 VdTÜV, NAK coated Mn-Sive compone (AristoRod intributes to so (c) technology chanised weat of feed distantinuated in the controlled in	er-coated MAG we opper-layer with opper-layer and improved properties. Bi-alloyed G4Si1/nts, pressure ves 12.50 to increase mooth, sound we, taking MAG we ding. Characterisces, a very stable ar and improved properties.	poptimum thickne is wires. It guarant vals and provide mechanical proportion of the proportion of the proportion of the weld metal is delds. OK Aristofilding operations tic features incluse arc at high well protection agains	ss, results in ratees longer person an excellent erties of the warm anical properties. Rm (MPa) 595 Arire for the GM and shipbuilding strength. This should 12.63 is treated excellent sading currents, st corrosion of	educed contar riods of low fo weld quality. reld. SES (M21) A4/A5 (%) 26 IAW of non- all g. It has a sligh also promotes eated with ESA of performanc tart properties extremely low the wire.	CVN (°C/J) (+20/130) (-20/90) (-30/70) oyed steels, a low By's unique e and allroung trouble-free
Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm) 0.6 to 2.0 OK AristoRod 12.63 Type Non-copper coated Polarity DC+ Shielding gas CO ₂ , Ar/CO ₂ mixed gases Size (mm)	ABS, BV, CE, DB, DNV, GL, LI OK Autrod TM 12.51 is ESAB's and cleanliness, in combination the feeding system with copperance stability and low spatter be. The chemistry of the wire is case. Classifications & approvals SFA/AWS A5.18: ER70S-6 EN ISO 14341-A: G4Si1 Weld metal classification EN ISO 14341-A: G 42 2 C1 4Si1 EN ISO 14341-A: G 46 4 M21 4Si1 ABS, BV, DB, DNV, CE, CWB OK AristoRod TM 12.63 is a nor used in general construction, manganese and silicon contersensitivity to surface impurities Advanced Surface Characterisefficiency, especially in robotic feeding at high wire speeds and silicon speeds and silicon contersensitivity to surface Characterisefficiency, especially in robotic feeding at high wire speeds and silicon speeds and silicon contersensitivity to surface Characterisefficiency, especially in robotic feeding at high wire speeds and silicon contents.	R, PRS, R premium of the premium of	quality copp continuous c compared we eaning and r introlled for controlled for controlled al composition Si 1 VdTÜV, NAK coated Mn-Sive compone (AristoRod intributes to so (c) technology chanised weat of feed distantinuated in the controlled in	er-coated MAG wopper-layer with opper-layer with opper-layer with opper-layer with opper-layer with opper-layer with low cost MAG naintenance interconsistently high removed (%) Mn 1.7 Si-alloyed G4Si1/nts, pressure ves 12.50 to increase wooth, sound w, taking MAG we ding. Characterisces, a very stable	poptimum thickne is wires. It guarant vals and provide mechanical proportion of the proportion of the proportion of the weld metal is delds. OK Aristofilding operations tic features incluse arc at high well protection agains	ss, results in ratees longer personal san excellent erties of the washing anical properties. Rm (MPa) 595 Vire for the GM and shipbuilding strength. This is dod 12.63 is tro new levels de excellent sating currents, at corrosion of mechanical properties.	educed contar viods of low fo weld quality. veld. Ses (M21) A4/A5 (%) 26 AW of non- all g. It has a sligh also promotes also promotes of performanc tart properties extremely low the wire.	CVN (°C/J) (+20/130) (+20/90) (-30/70) oyed steels, a low By's unique e and allroun trouble-free levels of

OK Autrod 12.64 is a copper-coated, Mn-Si-alloyed G4Si1/ER70S-6 solid wire for the GMAW of non-alloyed steels, as used in

general construction, automotive components, pressure vessel fabrication and shipbuilding. It has a slightly higher manganese and silicon content than OKAutrod 12.50 to increase the weld -metal strength. This also promotes low sensitivity to surface impurities

Size (mm) 0.8 to 1.6

Shielding gas

CO2, Ar/CO2 mixed gases

Polarity

DC+

EN ISO 14341-A: G 46 4 M21 4Si1

ABS, BV, CE, DB, DNV, GL, LR, RS, VdTÜV, NAKS

and contributes to smooth, sound welds.

	Classifications & approvals	Chemica	l composition wire	/rod (%)	Typical mechar	nical properties	s all weld meta	al (I1)
OK Tigrod 12.60		С	Si	Mn	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Size (mm) 1.6 to 3.2	SFA/AWS A5.18: ER70S-3 EN ISO 636-A: W2Si Weld metal classification EN ISO 636-A: W 38 3 2Si VdTÜV	0.1	0.6	1.1	420	515	26	(-30/90)
	OK Tigrod 12.60 is a copp of non-alloyed steels, as u maintenance related to au	sed in ger itomotive	eral construction and commercial v	, pressure vess rehicles.	el fabrication and ship	Ü	·	
	Classifications & approvals	Chemical	composition wire/	rod (%)	Typical mechan	ical properties	all weld meta	l (l1)
OK Tigrod 12.64		С	Si	Mn	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Size (mm) 1.6 to 3.2	SFA/AWS A5.18: ER70S-6 EN 1668: W4Si1 Weld metal classification EN ISO 636-A: W 38 3 2Si	0.09	1	1.7	525	595	26	(-30/70)
	ABS, BV, CE, DNV, GL, LF	R, VdTÜV,	NAKS					
	OK Tigrod 12.64 is a copp	er-coated	Mn-Si allovedW4	Si1/ER70S-6 s	olid rod for the GTAW	of non-allove	ed steels, as	used in

OK AristoRod™ & Marathon Pac™ An unbeatable combination in productive and trouble-free welding

welds. Suited for repair and maintenance related to automotive and commercial vehicles

general construction, pressure vessel fabrication and shipbuilding. It has a slightly increased manganese and silicon content to increase the weld metal strength. This also promotes lowsensitivity to surface impurities and contributes to smooth, sound

Marathon Pac™ – octagonal bulk drums

For many ESAB customers, Marathon Pac™ is key in maximising production efficiency and quality. In fact, it can cut down time on spool changes and maintenance by almost 95%.

Bulk supply Marathon Pac™s are available packed with either 250 or 475 kg of AristoRod welding wire.

An 'Endless' version combines the contents

of a series o Marathon Pac™s to form a continuous in-line supply source. As each drum empties, the subsequent drum takes over and a new drum is added to the line to form an uninterrupted supply. ESAB supplies a full range of accessories for efficient handling and installation of Marathon Pacs. Empty Marathon Pacs can be folded flat to save space and can be disposed environmentally-friendly.

ESAB OK AristoRod™ with Advanced Surface Characteristics has a number of unique features with advantages for manual, mechanised and robotic welding. These translate into clear benefits which, together, add up to increased productivity and lower welding costs.

Feature	Benefit
Consistent welding performance,	Consistent weld results
Stable arc with low feeding force	High weld quality. Reduced rework or post weld cleaning
Excellent arc ignition	Reduced post weld cleaning
High current operability	Higher productivity
Extremely low spatter level	Reduced post weld cleaning
Trouble-free feedability, even at high wire feed speeds and long feed distances	Higher productivity, reduced equipment downtime
Low fume emission	Cleaner working environment

New ASC wire surface technology!

OK AristoRod™ MAG welding wires with

Advanced Surface Characteristics resist

corrosion during storage, improves

feedability and arc stability and also

reduces contact tip wear to a level equal to
the very best copper coated wires.

Cored wires for mild steel

Classifications & approvals Typical chemical composition all weld metal (%) Typical mechanical properties all weld metal

OK Tubrod 14.11		С	Si	Mn	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Type Metal-cored	SFA/AWS A5.18: E70C- 6MH4 EN ISO: 17632-A:	0.06	0.6	1.4	470	560	28	-40/70
Polarity DC+	T 42 4 M M 3 H5							
01:11:	ABS, BV, CE, DB, DNV, GL	., LR, VdTÜV						
Shielding gas Ar/8%CO	OK Tubrod 14.11 is a wire the							
2	The welding characteristics	s of the wire p	ermit the us	e of lower arc volta	iges in the spray	/ transfer mod	de, which redi	ices arc powe
Size (mm)	The welding characteristics and thereby reduces the ris						,	

Classifications & approvals Typical chemical composition all weld metal (%) Typical mechanical properties all weld metal

OK Tubrod 14.13		С	Si	Mn	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Type Metal-cored	SFA/AWS A5.18: E70C-6M EN ISO: 17632-A T 42 2 M M 2 H5	0.06	0.6	1.4	503	580	28	-20/90
Polarity DC+	ABS, BV, CE, DB, DNV, GI	_, LR, VdTÜ\	/, MoD(N)					
Shielding gas Ar/20%CO ₂	OK Tubrod 14.13 is a tubul chassis construction and r weld appearance with the	epair and m	aintenance.	The arc action i	s stable at all curren			
Size (mm) 1.2, 1.4, 1.6	Date 17 - Company							

Classifications & approvals	Typical chemical composition all weld meta	al (%) Typical mechanical properties all weld metal
-----------------------------	--	---

Coreweld 46LS		С	Si	Mn	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Type Metal-cored	SFA/AWS A5.18: E70C-6M H4 EN ISO: 17632-A T46 4 M M 2 H5	0.04	0.65	1. 2	490	590	26	-40/72
Polarity								

Polari DC+

Shielding gas Ar/8%CO₂ Ar/20%CO₂

Size (mm) 1.2 - 1.6

ABS, BV, CE, DB, DNV, GL, VdTÜV (all 1.2mm)

Coreweld 46 LS is a new generation metal cored wire based on ESAB's revolutionary cored wire surface technology. It has been developed for the welding of plate thicknesses as from 1 mm and provides fabricators with a substantially faster and higher quality welding solution to solid MAG wire. The absence or very low levels of silica on the weld surface and minimal spatter result in reduced post weld cleaning before coating/painting.

Coreweld 46 LS is a unique product that markedly lowers the welding costs for mechanised and robotised fabrication. The many advantages relative to solid wire are associated with the extremely wide spray arc parameter envelope that starts as low as 160A. With solid wire spray arc starts at around 200A for diameter 1.0mm and 230A for diameter 1.2mm. Optimal results are obtained in 92%Ar/8%CO mixtures.

Coreweld 46 LS operates with very low spatter levels compared with solid wire in the short or globular arc mode. The excellent re-striking characteristics of Coreweld 46 LS also promotes low spatter welding for components with many short welds. This results in a reduction or complete elimination of post weld cleaning. Coreweld 46 LS gives a high quality weld penetration profile. Ideal fit-up can not always be achieved in a production environment; the wide arc associated with Coreweld 46 LS results in larger gaps being able to be bridged than with conventional solid wires at the same parameters settings, resulting in less post weld repair work and less rejects.

The extremely low arc voltage combined with a very high travel speed results in a low heat input. Associated with this are fewer problems with workpiece deformation commonly found when welding with solid wires using the pulsed technique.

Solid wires for low alloyed steel

	Classifications & approvals	Chen	nical com	nposition	wire/ro	d (%)	Typical mech	nanical prope	rties all weld	metal (M21)
OK AristoRod 13.12		С	Si	Mn	Cr	Mo	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Type Non-copper coated Polarity DC+	SFA/AWS A5.28: ER80S-G EN ISO 21952-A: G CrMo1Si GOST 2246: 08X CM A Weld metal classification EN ISO 21952-A: G CrMo1Si EN ISO 14341-B: G 55 M 1CM3	0.1	0.6	1	1.2	0.5	670	785	18	+20/40 0/30 -20/25
Shielding gas	VdTÜV, NAKS OK AristoRod™ 13.12 is a 1.1	ICr-0 5	Mo-allo	ved nor	conne	r-coated s	olid wire for the G	MAW of cre	en-resistar	nt steels of the
Ar/CO ₂ mixed gases Size (mm)	same composition, like those transportation fabrication ind	e used lustry, i	for pipe	s in pres is used	sure ve	essels and b ding suspen	oilers with a serv sions. OK Aristof	ice tempera Rod 13.12 is	ture of up to treated with	o 450°C. In the n ESAB's unique
0.8 to 1.6	Advanced Surface Character efficiency, especially in robot free feeding at high wire spectage spatter; low fume emission, renvironmentally-friendly Maraperiods of time.	ic and eds and educe	mechar d length d contac	nised we y feed d ct tip we	elding. C listance ar and	Characteristies, a very sta	c features include able arc at high w rotection against	e excellent s elding curre corrosion of	tart propert nts, extrements the wire. To	ies; trouble- ely low levels of ogether with the

	Classifications & approvals	Chemical	compos	sition wir	e/rod (%)		Typical mechanical properties all weld metal (M21)				
OK AristoRod 55		С	Si	Mn	Cr	Ni	Мо	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)	
Type Non-copper coated	SFA/AWS A5.28: ER100S-G EN ISO 16834-A: G Mn3NiCrMo	0.1	0.7	1.6	0.6	0.6	0.2	690	770	20	-20/75	
Polarity DC+	Weld metal classification EN ISO 16834-A: G 55 4 Mn3NiCrMo										-40/60 60/50	
Shielding gas Ar/CO ₂ mixed gases Size (mm) 0.8 to 1.6	CE OK AristoRod ™55 is a 0.5 AristoRod 13.13 is treated operations to new levels of features include excellent arc at high welding current protection against corrosic AristoRod wires provides t	with ESAB' performan start prope s, extreme on of the wi	s uniquence and rties; tro ly low lere. Toge	Advan allround uble-fre vels of s ther wit	ced Sur d efficier ee feedir spatter. I h the er	face Ch ncy, espong at hig low fumo vironme	aracte ecially h wire e emis entally-	ristics (ASC) to in robotic and speeds and le sion, reduced	echnology, f I mechanise engthy feed contact tip	taking MAG ed welding. (distances, a wear and in	welding Characteristic a very stable nproved	

	Classifications & approvals	Chemical composition wire/rod (%)						Typical mechanical properties all weld metal (M21)					
OK AristoRod 69		С	Si	Mn	Cr	Ni	Мо	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)		
Type Non-copper coated	SFA/AWS A5.28: ER110S-G EN ISO 16834-A: G Mn3Ni1CrMo Weld metal classification	<0.10	0.6	1.6	0.3	1.4	0.25	730 *690	800 *750	19 *20	+20/100 -20/70, -40/55		
Polarity	EN ISO 16834-A: G 69 4 Mn3NiCrMo							* Annealed @	620°C				
DC+	CE, DB, VdTÜV, NAKS												
Shielding gas Ar/CO ₂ mixed gases	OK AristoRod™ 69 is a 0.3 low-temperature impact to (ASC) technology, taking № especially in robotic and m at high wire speeds and le	ughness 1AG weld echanise	requirer ding ope ed weldi	ments. <i>A</i> rations t ng. Cha	ristoRo o new l acteris	od 69 is t evels of tic featu	reated v perform res inclu	with ESAB's un nance and all- ude excellent s	nique Advai round efficie start properi	nced Surface ency, ties, trouble	e Characteristic		
Size (mm)	fume emission; reduced co												
0.8 to 1.6	environmentally-friendly Malona periods of time.	arathon F	Pac™ bu	ılk pack	aging s	ystem, C	OK Aristo	oRod wires pr	ovides troul	ble-free wel	ding over		

Solid wires for low alloyed steel

	_	0:	B.4	0	NI:	14-	-	(MAD -)	D (MD-)	A4/A5 (%)	0)//)
Classifications & approvals	Chen	nical co	mpositioı	n wire/r	od (%)		Тур	ical mecha	anical propertie	s all weld metal	(M21)

OK AristoRod™ 79		С	Si	Mn	Cr	Ni	Мо	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Type Non-copper coated	SFA/AWS A5.28: ER120S-G EN ISO 16834-A: G 79 3 M Mn4Ni2CrNo Weld metal classification EN ISO 16834-A: G 79 4 Mn4Ni2CrMo	0.1	0.8	1.9	0.4	2.1	0.6	850	890	900	0/70 -20/60 -40/55

Polarity DC+

Shielding gas Ar/CO₂ mixed gases

Size (mm) 1.0, 1.2

OK AristoRod™ 79 is a 0.3Cr-1.9Ni-0.5 Mo alloyed, non copper-coated, solid wire for the GMAW of high strength steels, heat-treated steels and fine-grained structural steels with a yield strength of up to 850MPa, such as XABO90. OK AristoRod 79 is treated with ESAB's unique Advanced Surface Characteristics (ASC) technology, taking MAG welding operations to new levels of performance and all-round efficiency, especially in robotic and mechanised welding. Characteristic features include excellent start properties, trouble-free feeding at high wire speeds and lengthy feed distances, a very stable arc at high welding currents, extremely low levels of spatter, low fume emission, reduced contact tip wear and improved protection against corrosion of the wire. Together with the environmentally-friendly Marathon Pac™ bulk packaging system, OK AristoRod wires provides trouble-free welding over long periods of time.

Classifications & approvals Chemical composition wire/rod (%) Typical mechanical properties all weld metal (M21)

OK AristoRod™ 89		С	Si	Mn	Cr	Ni	Мо	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Туре	Classification wire:	0.09	0.7	1.8	0.4	2.2	0.6	920	1000	17	-40/60
Non-copper coated	SFA/AWS A5.28: ER120S-G EN ISO 16834- A G Mn4Ni2CrMo										
Polarity	Classification weld metal:										
DC+	(as welded) EN ISO 16834-A G89 4 M Mn4Ni2CrMo										
Shielding gas											
Ar/CO, mixed gases	CE, DB, GL, VdTÜV										

Size (mm) 0.8, 1.0, 1.2

OK AristoRod 89 is a non copper coated, low-alloyed, chromium-nickel-molybdenum alloyed, solid wire for GMAW of ultra high tensile strength steels requiring tough weld metal for critical applications. Also suitable when high impact strength at lower temperatures is required. The AristoRod wires are suitable for operating at high currents with maintained disturbance free wire feeding giving a stable arc with a low amount of spatter, due to its unique Advanced Surface Characteristics ASC) technology. OK AristoRod 89 is delivered on spools or in the unique ESAB Octagonal Marathon Pac, which is excellent in mechanised welding applications. Together with the environmentally-friendly Marathon Pac[™] bulk packaging system, OK AristoRod wires provides trouble-free welding over long periods of time.

Coreweld 46 LS

Metal cored wire for high speed thin plate welding beats solid wire in any aspect.

Overlap weld 2.0mm plate in Ar/8% CO, shielding gas. 20cm length.

Fillet weld 2.0mm plate in Ar/8% ${\rm CO_2}$ shielding gas. 20cm length.

Cross section fillet weld 2.0mm plate in Ar/8% CO₂ shielding gas.

Compared to solid MAG wire, Coreweld 46 LS offers:

- High welding speeds/increased productivity
- Absence of silica on weld surface/ no post weld cleaning
- Stable arc and excellent re-starting with minimal spatter/no disruptions, reduced post weld cleaning
- Low spray transition current/smooth consistent welding
- Parameters easy to optimise/no loss of production time
- Excellent feeding/no disruptions
- Excellent gap bridging/tolerant to non-ideal fit-up

Cored wires for ferritic stainless steel

Classifications & approvals Typical chemical composition all weld metal (%)

		21			,	,		
Arcaloy MC409Ti		С	Mn	Si	P	S	Cr	Ti
Type Motal cored	AWS A5.9: EC409	0.015	0.72	0.27	0.007	0.007	11.8	1.0

Polarity

Shielding gas Ar/ 2% O,

Size (mm)

Arcaloy MC409Ti is a 12% Cr alloy metal cored wire stabilised with titanium (Ti) for arc stability and to improve corrosion resistance, increase strength at high temperatures, and promote the ferritic microstructure. Arcaloy MC409Ti produces a smooth spray-type metal transfer with very minimal spatter. It is particularly suited for welding parts with poor fit up. It was designed for welding stainless steel catalytic converters, manifolds, mufflers and exhaust sysems.

Classifications & approvals Typical chemical composition all weld metal (%)

Arcaloy MC409Nb		С	Mn	Si	Nb	Cr	
Type Metal cored	AWS A5.9: EC409Nb	0.019	0.50	0.53	0.52	11.5	

Polarity DC+

Shielding gas Ar/ 2% O,

Size (mm)

1.2

Arcaloy 409Cb is stabilised with niobium (Nb) for arc stability and to form carbides as a means to improve corrosion resistance and increase strength at high temperatures. Cr range is 10.50 to 13.50%. Designed for the welding of ferritic stainless steel exhaust system components, such as manifolds, catalitic converters and mufflers. Produces a smooth spray arc metal transfer with minimal spatter. Suited for welding parts with poor fit-up.

Classifications & approvals Typical chemical composition all weld metal (%)

Arcaloy MC439 Ti		С	Mn	Si	Cr	Ti
Туре	AWS A5.9: EC439	0.016	0.76	0.27	17.9	0.68
Metal-cored						

Polarity DC+

Shielding gas Ar/ 2% O.

Size (mm)

1.2

Arcaloy MC439Ti is an 16-17% Cr alloy metal cored electrode stabilised with titanium (Ti). The high level of chromium provides additional oxidation and corrosion resistance when welding stainless steel converters, manifolds, mufflers, and exhaust systems. It is also suited for welding parts with poor fitup. Arcalloy MC439Ti produces a spray - type metal transfer with minimal spatter.

Classifications & approvals Typical chemical composition all weld metal (%)

	 21			. ,			
Arcaloy MC 18CrCb	С	Mn	Si	Nb	Cr	Ti	
Туре	0.21	0.70	0.51	0.50	18.6	0.25	
Metal-cored							

Polarity DC+

Shielding gas Ar/ 2% O,

Size (mm)

Arcaloy MC18CrCb is an 18% Cr Alloy metal cored wire stabilised with titanium (Ti) and niobium (Nb). It is designed for welding Armco 18Cr-Cb HP-10TM stainless steels used in catalytic converters, manifolds, mufflers and exhaust systems. It is also suited for welding parts with poor fit up. Arcaloy MC18CrCb produces a smooth spray-type metal transfer with very minimal spatter.

Solid wires for ferritic stainless steel

	Classifications & approvals	Typica	al chemi	cal con	npositi	on wi	re/rod	(%)				Typical mec weld metal	hanical prop	erties all
OK Autrod 430 LNbTi		С	Si	Mn	Cr	N	i N	lo l	Nb	Ti	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)
Polarity DC+	EN ISO 14343-A , G Z 18 LNbTi W.Nr ~1.4509	0.025	0.6	5 0.5	18	0	.3 0	.3 (0.55	0.25	0.3	275	420	26
Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm) 1.0, 1.2	OK Autrod 430 LNB/Ti is a stabilised with Nb and Ti, automotive industry and u good resistance to corrosi nical properties compared	for weld sed for on and	ding sim produc therma	nilar an ction of al fatigu	d mat exha ie. Th	ching ust s e wire	g stee ystem e prov	ls. OI ıs. Th ıides	KAu ne w a w	trod430 ires sho eld with	OLNbTi is ould be u n finer gra	developed sed when t ain size and	and design here is a ne hence bett	ed for the ed for very er mecha-
	Classifications & approvals	Typica	al chemi	ical con	npositi	on w	ire/rod	l (%)				Typical m	echanical pr al	operties all
OK Autrod 430LNb		С	Si	Mn	Cr	Ni	Мо	N	N	l b	Other	R _{p 0.2} (MP	a) Rm (MP	a) A4/A5 (^c
Polarity DC+	EN ISO 14343-A: G 18 L Nb W.Nr 1.4511	0.015	0.5	5 0.5	18.5	0.2	0.06	0.0	1 0).45	Tot <0.	5 275	420	26
Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂	A ferritic, stainless, solid w steels. OK Autrod 430 LNb of exhaust systems. The w Comments: Typical mecha	has be	een dev uld be i	eloped used w	l and hen v	desig	ned f	or the	e au ance	itomotive to cor	ve indust rosion ar	ry and is us nd thermal f	ed in the pr atigue is red	oduction
Size (mm)).8, 0.9, 1.0, 1.2, 1.6														
	Classifications & approvals	Typica	al chemi	ical con	npositi	on w	ire/rod	I (%)				Typical mec weld metal	hanical prop	erties all
OK Autrod 430Ti	Classifications & approvals	Typica C	al chemi	ical con	npositi C r	ion w		` '	Γi	Othe				erties all
Polarity	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502	C 0.09	Si 0.9	Mn 0.4	Cr	N i	M	1 (0.5	Tot <	0.5	weld metal R _{p 0.2} (MPa) 390	Rm (MPa)	A4/A5 (%) 24
Polarity DC+ Shielding gas Ar/2%CO ₂	EN ISO 14343-A: G Z 17Ti	0.09 vire with ed for c	0.9 a conticladding	Mn 0.4 ent of on unanifold	Cr 18 18% (alloye s, cata	0. Or and and allytic	M 3 0. d stak d low- conv	1 (oilised	0.5 d wi	Tot < th 0.5% steels. (0.5 6 Ti for w OK Autro	weld metal R _{p 0.2} (MPa) 390 elding similed 430Ti is a	Rm (MPa) 600 ar and mato	A4/A5 (%) 24 Ching used in the
Polarity DC+ Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm)	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502 A ferritic, stainless, solid w steels. The alloy is also us automotive industry for the	0.09 vire with ed for c	0.9 a conticladding	Mn 0.4 ent of on unanifold	Cr 18 18% (alloye s, cata	0. Or and and allytic	M 3 0. d stak d low- conv	1 (oilised	0.5 d wi	Tot < th 0.5% steels. (0.5 6 Ti for w OK Autro	weld metal R _{p 0.2} (MPa) 390 elding similed 430Ti is a	Rm (MPa) 600 ar and mato	A4/A5 (%) 24 Ching used in the
Polarity DC+ Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm)	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502 A ferritic, stainless, solid w steels. The alloy is also us automotive industry for the	0.09 vire with ed for de welding rees 0,5	0.9 a conticladding	Mn 0.4 eent of g on un anifold with	18 18% (alloye s, cata n Ar/2	0.: Or and and allytic	3 0. d stak d low- conv	1 Coilised	0.5 d wi	Tot < th 0.5% steels. (0.5 6 Ti for w OK Autro	weld metal R _{p 0.2} (MPa) 390 elding simil of 430Ti is a of the control of the	Rm (MPa) 600 ar and mato	24 ching used in the roperties
Polarity DC+ Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm) D.9, 1.0, 1.2	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502 A ferritic, stainless, solid w steels. The alloy is also us automotive industry for the stress relieved at 780 degr	0.09 vire with ed for de welding rees 0,5	0.9 n a contelladding ng of m	Mn 0.4 eent of g on un anifold with	18 18% (alloye s, cata n Ar/2	0.: Or and and allytic	3 0. d staked low- convolutions	1 () () () () () () () () () (0.5 d wi	Tot < th 0.5% steels. (id exha	0.5 6 Ti for w OK Autro	weld metal R _{p 0.2} (MPa) 390 elding simil d 430Ti is a s. Typical med	Rm (MPa) 600 ar and matc Iso widely t echanical properations	24 ching used in the roperties
Polarity DC+ Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm) D.9, 1.0, 1.2 DK Tigrod 430Ti Size(mm)	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502 A ferritic, stainless, solid w steels. The alloy is also us automotive industry for the stress relieved at 780 degr	0.09 vire with ed for ce welding rees 0,5	9.9 a a contiledding of mish weld sal chemistrian	Mn 0.4 ent of g on unanifolded with	Cr 18 (18%) (alloyee alloyee alloyee alloyee) Ar/2	Ni 0. Cr an d an dalytic %CC	Modern Mo	1 Collised alloys	D.5 d wir yed s s an	Tot < th 0.5% steels. (id exha	o.5 6 Ti for w OK Autro ust pipes	weld metal R _{p 0.2} (MPa) 390 elding similid 430Ti is a similid to the control of the control	Rm (MPa) 600 ar and mato Iso widely usechanical potential	A4/A5 (%) 24 ching used in the roperties
OK Autrod 430Ti Polarity DC+ Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm) 0.9, 1.0, 1.2 OK Tigrod 430Ti Size(mm) 1.0 to 3.2	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502 A ferritic, stainless, solid w steels. The alloy is also us automotive industry for the stress relieved at 780 degr	C 0.09 vire with ed for ce welding rees 0,5 Typica C 0.09 d with a eladding welding welding welding	Si 0.9 a a conticladding of mish weld si 0.7 conters on unage of mish go of mish weld	Mn 0.4 ent of a on unanifolded with ical con Mn 0.4 at of 18 alloyed	18 18% (alloyee s, cata n Ar/2 Cr 17:9 Cr 17:9 Cr 17:9	No. O. Dr an O	M3 0. d stated low-convolutions of the convolutions of the convolu	1 (%) 1 (%) 1 seed v	Ti 0.5 with	Tot < th 0.5% steels. (d exha Ot 0,5% TOK Tigr	0.5 6 Ti for w OK Autro ust pipes her	weld metal R _{p 0.2} (MPa) 390 elding simil. d 430Ti is a Typical med weld metal R _{p 0.2} (MPa) >300 ding similar is also wid. Typical med	Rm (MPa) 600 ar and match Iso widely used in technical prop	24 ching used in the roperties all 24/45 (%) 24 ching used in the roperties 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Polarity DC+ Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm) 0.9, 1.0, 1.2 OK Tigrod 430Ti Size(mm)	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502 A ferritic, stainless, solid w steels. The alloy is also us automotive industry for the stress relieved at 780 degree Classifications & approvals EN ISO 14343-A: W Z 17Ti W.Nr: 1.4502 A ferritic stainless solid roc The alloy is also used for c automotive industry for the	0.09 vire with ed for ce welding rees 0,5 Typica 0.09 d with a eladding e weldinges 0,5	Si 0.9 a a conticladding of mish weld si 0.7 conters on unage of mish go of mish weld	Mn 0.4 ent of g on unanifolded with one of the one of	Cr 18 18% (alloyee s, cata) 18% (r 17.9) 17.9 18 Cr 17.9 18 Cr 17.9 18 Cr 17.9 18 Cr 18 Cr 18 Cr 18 Cr 18 Cr	0. Or and an allytic on w Ni on w and so on w and so on w and so ow-a	M 3 0. d state d low- conv y 2. M 3 0.	1 (%) 1 (%) 1 (seed viscosity)	Ti 0.5 with	Tot < th 0.5% steels. (d exha Ot 0,5% TOK Tigr	0.5 6 Ti for w OK Autro ust pipes her	weld metal R _{p 0.2} (MPa) 390 elding simil. d 430Ti is a Typical med weld metal R _{p 0.2} (MPa) >300 ding similar is also wid. Typical med	Rm (MPa) 600 ar and matc lso widely u echanical prop Rm (MPa) >450 and matchiely used in t	24 ching used in the roperties all 24/A5 (%) 24 ching used in the roperties 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Polarity DC+ Shielding gas Ar/2%CO ₂ Ar/1-2%O ₂ Size (mm) 0.9, 1.0, 1.2 OK Tigrod 430Ti Size(mm)	EN ISO 14343-A: G Z 17Ti W.Nr: 1.4502 A ferritic, stainless, solid w steels. The alloy is also us automotive industry for the stress relieved at 780 degree Classifications & approvals EN ISO 14343-A: W Z 17Ti W.Nr: 1.4502 A ferritic stainless solid roc The alloy is also used for cautomotive industry for the stress relieved at 780 degree	0.09 vire with ed for ce welding rees 0,5 Typica 0.09 d with a eladding e weldinges 0,5	0.9 a a contile control of the content of the conte	Mn 0.4 ent of g on unanifolded with one of the one of	Cr 18 18% (alloyee s, cata) 18% (r 17.9) 17.9 18 Cr 17.9 18 Cr 17.9 18 Cr 17.9 18 Cr 18 Cr 18 Cr 18 Cr 18 Cr	0. Or and an allytic on w Ni on w and so on w and so on w and so ow-a	M 3 0. d state d low- conv 2. M 3 0.	1 (%) 1 (%) 1 (%)	Ti 0.5 with	Tot < th 0.5% steels. (d exha 0,5% 1 DK Tigr exhaus	0.5 6 Ti for w OK Autro ust pipes her	weld metal R _{p 0.2} (MPa) 390 elding simil. d 430Ti is a . Typical med weld metal R _{p 0.2} (MPa) >300 ding similar is also widd Typical med	Rm (MPa) 600 ar and match Iso widely usechanical prop Rm (MPa) >450 and matchi ely used in the	24 ching used in the roperties all 24/A5 (%) 24 ching used in the roperties 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20

equivalent steel grades in applications such as catalytic converters and mufflers.

0.9, 1.0, 1.2

Solid wires for austenitic stainless steel

	Classifications & approvals	Typic	cal che	emical	comp	ositic	on wire	/rod (%	6)			Typical mech	nanical prop	erties all wel	d metal
OK Autrod 16.95		С	Si	Mn	Cr	N	Ni	Mo I	N	Othe	r	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Polarity DC+	EN ISO 14343-A: G 18 8 Mn W.Nr: 1.4307	0.1	1.0	6.5	18.5	8	3.5	0.1	<0.08	Tot <	0.5	450	640	41	+20/130
Shielding gas	CE, DB, TÜV, NAKS														
Ar/2%CO ₂ Ar/1-3%O ₂	A solid, corrosion resistant types. OK Autrod 16.95 has content improves the weld	s an o	verall operti	corro	sion r ch as	esista wett	ance sting. T	similar he pro	to tha	at of th is a m	ne co odifi	orresponding ed variant of	g parent me ER307, ba	etal. The hig sically with	her silicon a higher Mr
Size (mm)	content to make the weld le of secondary importance.														
0.8 to 1.6	manganese, work hardena													, 0	
	Classifications & approvals	Typic	cal che	emical	comp	ositic	on wir	e/rod (%)			Typical mec	hanical prop	oerties all we	d metal
OK Autrod 308LSi		С	Si	Mn	Cr	Ni	Мо	N	Oth	her	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
Polarity DC+ Shielding gas	EN ISO 14343-A: G 19 9 LSi AWS/SFA A5.9 ER308LSi W.Nr: ~1.4316 CE, CWB, DB, DNV, TÜV, NAKS	0.01	0.8	1.8	20	10	0.1	<0.08	3 Tot	<0.5	8	370	620	36	+20/110 -60/90 -196/60
Ar/2%CO ₂ Ar/1-3%O ₂	A solid, corrosion resistant, Autrod 308LSi has good ge when there is a risk of inter alloy is widely used in the c	eneral granul	corro	sion re rosio	esista n. The	nce. high	The a	lloy ha	as a lo ontent	w carl	bon oves	content, ma the welding	king it parti properties	cularly reco	mmended
Size (mm) 0.6 to 1.6															
	Classifications & approvals	Typic	cal che	emical	comp	ositic	on win	e/rod ('	%)			Typical med	chanical prop	oerties all we	ld metal
OK Autrod 309LSi		С	Si	Mn	Cr	Ni	Мо	N	Ot	ther F	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J
Polarity DC+ Shielding gas	EN ISO 14343-A: G 23 12 LSi AWS/SFA 5.9 ER309LSi W.Nr: 1.4332 DB, CE, CWB, TÜV, NAKS	0.02	0.8	1.8	24	13	0.1	<0.0		ot 8).5	3	440	600	41	+20/160 -60/130 -110/90
Ar/2%CO ₂ Ar/1-3%O ₂	A solid, corrosion resistant 23% Cr -12% Ni types. The the wire for buffer layers ar general corrosion resistance	e alloy nd diss	is als similar	o use r joints	d for	weldi nece	ing bu essary	ffer la	yers o ntrol t	n CMı he dilu	n ste ution	eels and weld of the weld.	ding dissim OK Autro	ilar joints. V d 309LSi ha	/hen using
Size (mm) 0.8 to 1.6															
	Classifications & approvals	Typic	cal che	emical	comp	ositic	on wire	/rod (9	%)			Typical mech	nanical prop	erties all wel	d metal
OK Autrod 316LSi		С	Si	Mn	Cr	Ni	Мо	N	Oth	er	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Polarity DC+ Shielding gas	EN ISO 14343-A: G 19 12 3 LSi AWS/SFA A5.9 ER316LSi W.Nr: 1.4430	0.02	0.8	1.8	18.5	12	2.7	<0.08	Tot <	<0.5	7	440	620	37	+20/120 -60/95 -196/55
Ar/2%CO ₂	CE, CWB, DB, DNV, TÜV, NAKS														
Ar/1-3%O ₂	A continuous, solid, corros	cion ro	oiotor												
	Cr -8% Ni and 18% Cr -10 has very good resistance to	% Ni -	3% N	∕lo typ	e. Ok	(Aut	rod 3	6LSi l	nas go	ood ov	eral/	l corrosion re	esistance; i	n particular,	the alloy
Size (mm) 0.6 to 1.6	Cr -8% Ni and 18% Cr -10	% Ni - o corro when	3% Nosion there	/lo typ in acid is a ri	e. Ok d and sk of	Aut chlo inter	rod 3 ⁻ rinate granu	6LSi l d envi ar cor	nas go ronme rosior	ood ov ents. T n. The	eral he a high	l corrosion re alloy has a lo	esistance; i w carbon d	n particular, content which	the alloy ch makes it

Solid wires for austenitic stainless steel

	Classifications & approvals	Typic	al che	emical	comp	ositior	n wire/i	rod (%))			Typical mec	hanical prop	erties all weld	d metal
OK Tigrod 308LSi		С	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Size (mm) 1.0-4.0	EN 14343-A: W 19 9 LSi AWS/SFA A5.9 ER308LSi W.Nr: ~1.4316 CE. CWB, DB, DNV, TÜV , NAKS		0.8	1.8	20	10	0.1	<0.08	Tot. <0.5	8	480	625	37	+20/170 -60/150 -110/140 -196/100

Bare, corrosion resistant, chromium-nickel rods for welding austenitic chromium-nickel alloys of the 18% Cr-8% Ni type. OK Tigrod 308LSi has good overall corrosion resistance. The alloy has a low carbon content which makes it particularly recommended when there is a risk of intergranular corrosion. The higher silicon content improves the welding properties such as wetting. The alloy is widely used in the chemical and food processing industries, as well as for pipes, tubes and boilers.

	^												
	C	Si	Mn	Cr	Ni	Мо	N	Other	FN	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Si	Cu	0.8	1.8	18	12	2.8	<0.08	Tot <0.5	7	480	630	33	+20/175 -110/150 -196/110
	A A5.9 Si	A A5.9 0.01 Si Cu	A A5.9 0.01 0.8 Si Cu	A A5.9 0.01 0.8 1.8 Si Cu	A A5.9 0.01 0.8 1.8 18 Si Cu	A A5.9 0.01 0.8 1.8 18 12 Si Cu	A A5.9 0.01 0.8 1.8 18 12 2.8 Si Cu	A A5.9 0.01 0.8 1.8 18 12 2.8 <0.08 Si Cu	A A5.9 0.01 0.8 1.8 18 12 2.8 <0.08 Tot <0.5 ii	A A5.9 0.01 0.8 1.8 18 12 2.8 <0.08 Tot <0.5 7	A A5.9 0.01 0.8 1.8 18 12 2.8 <0.08 Tot <0.5 7 480	A A5.9 0.01 0.8 1.8 18 12 2.8 <0.08 Tot <0.5 7 480 630	A A5.9 0.01 0.8 1.8 18 12 2.8 <0.08 Tot <0.5 7 480 630 33

Bare, corrosion resistant, chromium-nickel-molybdenum rod for welding austenitic stainless alloys of the 18% Cr-8% Ni and 18% Cr-10% Ni-3% Mo type. OK Tigrod 316LSi has good overall corrosion resistance, particularly to corrosion in acid and chlorinated environments. The alloy has a low carbon content which makes it particularly recommended when there is a risk of intergranular corrosion. The higher silicon content improves welding properties, such as wetting. The alloy is widely used in the chemical and food-processing industries, as well as in shipbuilding and various architectural structures.

We made this wire matt - so your productivity can shine.

A cleaner wire for a cleaner finish

ESAB matt stainless steel solid wires are manufactured using an innovative drawing process. The matt surface is finished with a special feed-aid that does not accumulate within the feeding system or welding gun, and has no adverse effect on the quality of the finished weld. It gives the following advantages:

- the matt surface allows the feed rolls to gain a better grip on the wire and so eliminates troublesome slippage.
- the manufacturing process gives improved glide and stiffness thereby lowering the feed forces required to drive the wire to the welding torch or gun. This is especially important for high cycle intermittent welding operations.
- the manufacturing process permits a stricter control over the cast and the helix of the wire. These are two essential properties with spooled wires and need to be retained as constant as possible.

Taken together, all three add up to better welding performance with improved arc stability and weld quality together with higher production output.

Greater arc stability,
better weld quality
and higher production output.

Cored wires for austenitic stainless steel

	Classifications & approvals	Typic	al chen	nical cor	npositio	n all we	eld metal	l (%)	Typical me metal	chanical prop	oerties all weld
OK Tubrod 15.30		С	Si	Mn	Cr	Ni	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)
Type Metal cored	EN ISO 17633-A: T 19 9 L M M 2	0.02	0.7	1.3	18.8	9.8	0.1	0.10	340	550	45
Polarity DC+	DB, TÜV										
Shielding gas Ar/2%O ₂	OK Tubrod 15.30 is a sand 304L grades. The mechanised and robo	wire produ	ices no	slag -	only sm	nall silic	a island	ds - and	d little spatter	making it su	uitable for
Size (mm) 1.2											
10											

	Classifications & approvals		al cher eld met	nical co al (%)	mposit	ion	Typical med metal	chanical prop	erties all weld						
OK Tubrod 15.31		С	Si	Mn	Cr	N	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)						
Type Metal cored	EN ISO 17633-A: T 19 12 3 L M M 2	0.02	0.7	1.2	17.6	11.6	2.7	0.10	416	575	37				
Polarity DC+	DB, DNV, LR, TÜV														
Shielding gas Ar/2%O ₂	no slag - only small sil	DB, DNV, LR, TÜV OK Tubrod 15.31 is a stainless 316L grade metal cored wire designed for high deposition welding. The wire produce no slag - only small silica islands - and little spatter making it suitable for mechanised and robotic welding. For welding in the spray mode of arc transfer with Ar/2%O ₀ shielding gas.													
Size (mm) 1.2, 1.6								2							

	Classifications & approvals	, ,	al cher eld met	nical co al (%)	mposit	on			Typical med metal	chanical prop	erties all weld
OK Tubrod 15.34		С	Si	Mn	Cr	N	Мо	Cu	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)
Type Metal cored	EN ISO 17633-A: T 18 8 Mn M M 2	0.10	0.7	6.7	18.5	8.7	0.1	0.10	430	635	39
Polarity DC+	DB, TÜV										
Shielding gas Ar/2%O ₂ Size (mm)	OK Tubrod 15.34 is a saustenitic-manganese spatter making it suita Ar/2%O ₂ shielding gas	steels and ble for med	dissim	ilar stee	els. The	wire p	produce	es no sl	lag - only sma	Il silica island	ls - and little
1.2											

Solid wire for nickel based materials

	Classifications & approvals	Typica	al cher	nical c	ompos	ition wire/	rod (9	%)	Typical mec	hanical prop	erties all wel	d metal
OK Autrod 19.82		С	Si	Mn	Cr	Ni	Мо	Other	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Polarity DC+	EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb) AWS/SFA 5.14: ERNiCrMo-3	0.01	0.1	0.1	22.0	bal	9	Tot < 0.5	500	780	45	-105/120 -196/110
Shielding gas Ar Ar/He Size (mm) 0.8 to 1.6	TÜV, DNV A continuous, solid, corros resistant materials, 9% Ni s joining dissimilar metals of temperatures. Good resistance to pitting Wnr. 2.4831 - used for exhaustic process.	steels a the typ and sti	and sir bes me ress co	milar s ention orrosid	teels v ed abc	vith high ove. The v	notch weld i	n toughne metal has	ss at low ter very good r	nperatures. nechanical	It is also su properties a	itable for at high and low

	Classifications & approvals	Typica	l chem	ical co	mpositio	n wire	/rod (%	b)	Typical mecl	nanical prop	erties all weld	d metal
OK Autrod 19.85		С	Si	Mn	Cr	Ni	Мо	Other	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Polarity DC+	EN ISO 18274: S Ni 6082 (NiCr20Mn3Nb) AWS/SFA 5.14: ERNiCr-3	0.02	0.1	3.0	20.0	bal		Tot <0.5	420	680	40	-196/80
Shielding gas	TÜV	Cu <0.5	Fe <0.7	Ti <3	Nb+Ta 2.5							
	A nickel-based, corrosion heat resistant steel, corros is also	sion res	sistant	steel,	9% Ni a	nd sin	nilar st	teels with	high notch to	oughness a	t low tempe	ratures. It
Size (mm) 0.8 to 1.6	suitable for joining dissimi shielding gas. Also suited systems.											

	Classifications & approvals	Typical	chemi	cal co	mposi	tion wire/	rod (%	n)	Typical mech	nanical prop	erties all weld	d metal
OK Tigrod 19.82		С	Si	Mn	Cr	Ni	Мо	Other	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Size (mm) 0.6 to 3.2	EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb) AWS/SFA 5.14: ERNiCrMo-3	0.01	0.1	0.1	22.0	bal	9	Tot < 0.5	500	780	40	-196/110
	TÜV, DNV	Cu <0.5	AI <0.4	Fe <2	Ti <0.4	Nb+Ta 3.65						

A nickel-based, corrosion and heat resistant 22% Cr, 9% Mo, 3.5% Nb rod for the GTAW of high-alloyed steel, heat resistant steel, corrosion resistant steel, 9% Ni steels and similar steel with high notch toughness at low temperatures. It is also suitable for joining dissimilar metals of the types mentioned above. OK Tigrod 19.82 is normally welded with pure Ar as the shielding gas.

	Classifications & approvals	Typical	chemi	ical co	mpos	ition wi	ire/rod	(%)	Typical mec	hanical prop	erties all weld	d metal
OK Tigrod 19.85		С	Si	Mn	Cr	Ni	Мо	Other	R _{p 0.2} (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Size (mm) 0.6 to 3.2	EN ISO 18274: S Ni 6082 (NiCr20Mn3Nb) AWS/SFA 5.14: ERNiCr-3	0.02	0.1	3	20	>67		Tot < 0.5	440	670	40	+20/150 -196/100
	TÜV	Cu <0.5	Ti <0.7	Fe <3.0								

A nickel-based, corrosion and heat resistant 20% Cr, 3% Mn, 2.5% Nb rod for the GTAW of high-alloyed steel, heat resistant steel, corrosion resistant steel, 9% Ni steels and similar steels with good notch toughness at low temperatures. It is also suitable for joining dissimilar metals of the types mentioned above. OK Tigrod 19.85 is usually welded with pure Ar as the shielding gas.

Solid wires for aluminium alloys

	Classifications & approvals	Турі	cal che	emical c	ompos	sition v	/ire/rod	(%)			Typi met		hanical p	roperti	es all weld
OK Autrod 4043		Si	Mn	Cr	Cu	Ti	Zr	ı F	е	Other	R _{p 0.2}	(MPa)	Rm (MI	Pa) A	I/A5 (%)
Size (mm) 0.8 to 2.4	SFA/AWS A5.10: ER4043 EN ISO 18273S: AI 4043 (AISi5) EN ISO 18273S: AI 4043A (AISi5(A))	5.0	<0.05	6 <0.0	5 <0.	05 <0).15 <c< td=""><td>).1 <</td><td>0.6</td><td><0.05</td><td>55</td><td></td><td>165</td><td>18</td><td></td></c<>).1 <	0.6	<0.05	55		165	18	
	CWB, DB, CE														
	OK Autrod 4043 is one of tiller alloy. Used for welding improved fluidity (wetting a cracking and produces briwelding current DC(+)	g radia action)	ators, f), mak	fuel tan ing the	ks, air alloy t	condi he pre	tioning ferred	, exha choic	aust ce of	parts welde	. The s ers. Th	silicon a ne alloy	addition is not se	results ensitive	in to weld
	Classifications & approvals	Турі	cal che	emical c	ompos	sition v	/ire/rod	(%)		Ty	/pical r	nechani	ical prope	erties a	ll weld metal
OK Autrod 4047		Si	Mn	Mg	Cu	Ti	Zn	Fe	Oth	er R	_{p 0.2} (M	Pa) Rr	n (MPa)	A4/A5	(%)
Size (mm) 0.9, 1.2, 1.6	SFA/AWS A5: 10ER4047 EN ISO 18273S: AI 4047 (AISi12) EN ISO 18273S: AI 4047A (AISi12(A))	12	0.15	<0.10	0.05	0.15	0.2	0.6	<0.1	15 80	0	17	0	12	
	CWB OK Autrod 4047 was origin freezing range. In addition,														
	OK Autrod 4047 was origing freezing range. In addition, reduced shrinkage. The all using OK Autrod 4047 as a Non-heat treatable. Used the stream of the stre	it has oy pro a filler for rac	a hig oduce: alloy. diators	her silic s bright The allo , fuel ta	con co t, almo by can unks ar	ntent i st sm be us nd cab	than Ol ut-free ed in a pins. W	K Aut weld: pplica elding	trod 4 s. Ho ation	4043, ot crad is with	which cking in susta	n provid is signif ained el	es incre icantly re levated t	ased fl educed emper	uidity and d when atures.
OK Autrod 5183	OK Autrod 4047 was origing freezing range. In addition, reduced shrinkage. The all using OK Autrod 4047 as a	it has oy pro a filler for rac	a hig oduce: alloy. diators	her silic s bright The allo	con co t, almo by can anks ar	ntent i st sm be us nd cab	than Ol ut-free ed in a pins. W	K Aut weld: pplica elding	trod 4 s. Ho ation	4043, ot crad is with rent [which cking i n susta DC(+)	n provid is signif ained el Typical	es increation increation increased i	ased fleduced emper	uidity and d when atures. oerties all weld
Size (mm)	OK Autrod 4047 was origing freezing range. In addition, reduced shrinkage. The all using OK Autrod 4047 as a Non-heat treatable. Used the stream of the stre	it has oy pro a filler for rac Typi Si	a hig oduces alloy. diators	her silic s bright The allo , fuel ta emical c	con co t, almo by can unks ar	ntent to st sm be us nd cab sition v	than Ol ut-free ed in a pins. W	K Aut weld: pplica elding (%)	trod ⁴ s. Ho ation g cur	4043, ot craces with crent [which cking i n susta DC(+)	n provid is signif ained el Typical	es increation increation increased i	ased fleduced emper cal pro	uidity and d when atures.
OK Autrod 5183 Size (mm) 1.0 to 2.4	OK Autrod 4047 was origin freezing range. In addition, reduced shrinkage. The all using OK Autrod 4047 as a Non-heat treatable. Used the Classifications & approvals SFA/AWS A5.10: ER5183 EN ISO 18273S: AI 5183	it has oy pro a filler for rac	s a hig oduce: alloy. diators cal che Mn 0.8	her silic s bright The allo , fuel ta emical c	con co t, almo by can unks ar compos	ntent i st sm be us nd cab sition w	than Ol ut-free ed in a bins. W	K Aut weld: pplica elding (%)	trod ⁴ s. Ho ation g cur	4043, ot craces with crent [which cking in sustance of the cking in sustan	n provid is signif ained el Typical	es incredicantly relevated to the control of the co	ased fleduced emper cal pro	uidity and d when atures. Derties all weld A4/A5 (%)
Size (mm)	OK Autrod 4047 was origin freezing range. In addition, reduced shrinkage. The all using OK Autrod 4047 as a Non-heat treatable. Used 1 Classifications & approvals SFA/AWS A5.10: ER5183 EN ISO 18273S: AI 5183 (AIMg4.5Mn0.7(A)	it has oy pro a filler Typi Si 0.25	s a higgoduces alloy. 'A distribution of the control of the contro	her silicks bright The allot The all	con co t, almo y can unks ar compos Mg 4.8 ghest DK Aut y usec re to co	ntent it st sm be usst sm be usst sm be usst sm d calculation v Cu 0.1	than Olut-free ed in a pins. White/rod Ti 0.15 ole stree as 656 typerine ar re elem	A Autiweld: pplically p	rod 4 s. Ho ation g cur Fe 0.44 in the r fails ructur are in	4043, to crack the crack that the cr	which cking in sustance of the cking in sustan	Typical R _{p.0.2} (No. 140) It condits as a severe ons when alloying a servere ons when a servere on a servere	es increicantly revated to the evaluated to the evaluated to the evaluated to the evaluate to	ased fleduced emper cal properties (MPa)	uidity and d when atures. Derties all weld A4/A5 (%) 25 5083 and singth, high fractions
Size (mm)	OK Autrod 4047 was origin freezing range. In addition, reduced shrinkage. The all using OK Autrod 4047 as a Non-heat treatable. Used to Classifications & approvals SFA/AWS A5.10: ER5183 EN ISO 18273S: AI 5183 (AIMg4.5Mn0.7(A) ABS, CWB, DB, DNV, GL, LR, OK Autrod 5183 is designed high-magnesium alloys. The requirements of AA 5083. toughness for impact resist recommended for elevated.	it has on product of the control of	s a higg oduce: alloy. I diators cal che Mn 0.8	her silicks bright The allot The all	ghest ghest ghest guident gu	ntent in tent is st sm be us and calculation with tent in tent	than Olut-free ed in a pins. Whire/rod Ti 0.15 ble streight str	A Autiweld: pplica pplica (%) Zn 0.25 ngth i ically ad str ents ents usce	rod 4 s. Ho ation g cur Fe 0.44 in the r fails ructur are in	4043, to crack the crack that the cr	which cking in sustance of the cking in sustan	Typical Typical R _{p 0.2} (M 140 d condit e as-we ons which allows a corross	es increicantly revated to the evaluation of allelded tenere highly is not increase.	loy AA losile streng	uidity and d when atures. Derties all weld A4/A5 (%) 25 5083 and singth, high fractions
Size (mm)	OK Autrod 4047 was origin freezing range. In addition, reduced shrinkage. The all using OK Autrod 4047 as a Non-heat treatable. Used to Classifications & approvals SFA/AWS A5.10: ER5183 EN ISO 18273S: AI 5183 (AIMg4.5Mn0.7(A) ABS, CWB, DB, DNV, GL, LR, OK Autrod 5183 is designed high-magnesium alloys. The requirements of AA 5083. toughness for impact resists recommended for elevated treatable. Welding current	it has on product of the control of	s a higg oduce: alloy. I diators cal che Mn 0.8	her silices bright The allot The all	con co t, almo t, almo ty can tinks ar compose Mg 4.8 ghest DK Aut ty usec te to co tication compose	ntent in tent is st sm be used to	than Olut-free ed in a pins. Whire/rod Ti 0.15 ble streight str	A Autiweld: pplica pplica (%) Zn 0.25 ngth i ically ad str ents ents usce	rod 4 s. Ho ation g cur Fe 0.4 in the fails ructurare in are in pptibil	4043, to crack swith trent [which cking in sustance of the cking in sustan	Typical R _{p.0.2} (M 140 d condite as-wee ons which allogs corros	es increicantly revated to the evaluation of all elded tenere highly is not ion crace.	loy AA sile streng king. T	uidity and d when atures. Derties all weld A4/A5 (%) 25 5083 and singth, high fractions and the alloy is not the different and the alloy is not the alloy is

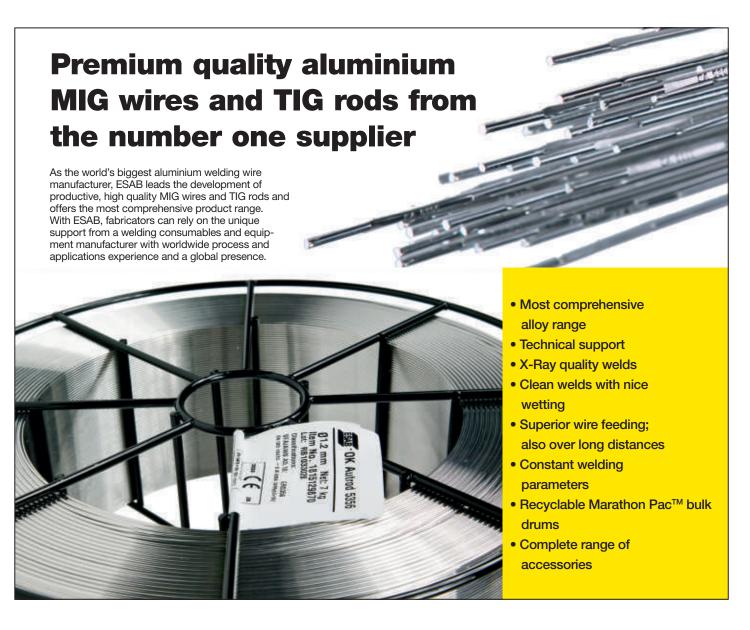
ABS, CWB, DB, DNV, GL, LR, VdTÜV, Ü

OK Autrod 5356 is the most widely used welding alloy and can be classified as a general-purpose type filler alloy. OK Autrod 5356 is typically chosen because of its relatively high shear strength. The 5XXX alloy base material, welded with OK Autrod 5356, with a weld pool chemistry greater than 3% Mg and service temperatures in excess of 65°C, is susceptible to stress corrosion cracking. It is the most universal wire for aluminium components in the transportation fabrication industry. The alloy is non-heat treatable. Welding current DC(+)

Solid wires for aluminium alloys

Classifications & approvals

Typical chemical composition wire/rod (%)


Typical mechanical properties all weld metal

OK Autrod 5554 Si Mn Cr Mg Cu Ti Zn Fe Other R_{p 0.2} (MPa) Rm (MPa) A4/A5 (%)

Size (mm) 1.2, 1.6 SFA/AWS A5.10: ER5554 EN ISO 18273S: AI 5554 (AIMg2.7Mn) 0.25 0.75 0.15 2.7 <0.1 0.13 <0.25 <0.40 <0.15 110 230 17

CWB

OK Autrod 5554 is a solid aluminium wire with a content of 2.7% Mg. It is recommended for welding AIMg alloys like 5454. Typical applications include chemical storage tanks, automotive components like wheels and frame sections. The weld metal is not sensitive to stress corrosion cracking at elevated temperatures. Welding current DC +

Solid wires for copper based materials

Typical chemical composition wire/rod (%) Typical mechanical properties all weld metal

Typical chemical composition wire/rod (%) Typical mechanical properties all weld metal

≤ 0.3

≤ 0.2

≤ 0.2

A solid copper wire intended for laser brazing of zinc coated steel sheets. OK Autrod CuSi Laser is especially developed for

laser brazing of body-in-white applications within the automotive industry. Compared to a standard CuSi3Mn1 copper wire

Rp 0.2

(MPa)

130

Rm

350

(MPa)

A4/A5

(%)

40

OK Autrod 19.30		Cu	Si	Mn	Sn	Zn	Fe	Rp 0.2 (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J
Type Copper based	SFA/AWS A5.7: ERCuSi-A EN ISO 24373: S Cu 6560 (CuSi3Mn1)	>94.0	3.4	1,1	<0.2	<0.2	0.02	130	350	40	
Shielding gas	VdTÜV										
Ar/He	OK Autrod 19.30 is a solid,										
Dimensions 0.8 - 1.6mm	brazing of zinc-coated stee wear resistance. The alloy lay welding on low- and no with pure Ar as the shieldir current DC(+)	is widely n-alloye	used ir d steels	the join and cas	ing of zii t iron. P	nc-coat ulsed G	ed stee MA is r	el sheets in car recommended	body produ . OK Autrod	iction, as we 19.30 is nori	ll as for ove mally weld
	Classifications	Typica	l chemic	al compo	osition w	ire/rod (⁹	%) Typid	cal mechanical	properties all	weld metal	
OK Autrod 19.40		Cu	Si	Mn	Al	Zn	Fe	Rp 0.2 (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
Type Copper based	SFA/AWS A5.7: ERCuAl-A1 EN ISO 24373: S Cu 6100 (CuAl8)	bal.	0.05	<0.5	7.9	<0.1	<0.5	175	420	40	
Shielding gas He Ar/He Ar/HO One Ar/1%O ₂ Dimensions 0.8 - 1.6mm	OK Autrod 19.40 is a solid and is recognised for its hi The alloy is widely used fo common applications inclu the automotive industry. O	gh streng r joining ude the c	gth, goo corrosic verlay v	od wear i on-resista velding o	esistand ant pipe of bearin	ce and versions an	ery good of alum o's prop	od corrosion re ninium bronze sellers and rails	esistance, po or other spe as well as 2	articularly in cial brass all Zinc coated r	salt water. loys. Other naterials ir
	Classifications	Typica	ıl chemic	cal comp	osition w	ire/rod (°	%) Typi	cal mechanical	properties all	weld metal	
OK Autrod 19.41		Cu	Si	Mn	AI	Ni	Fe	Rp 0.2 (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/
Type Copper based	EN ISO 24373: S Cu 6327 (CuAl8Ni2)	bal.	0.2	1.8	8.5	2.4	2.0	N/A	N/A	N/A	N/A
Shielding gas Ar He Ar/He Dimensions	A continuous solid alumini welding of cast or wrought alloy has very good resista	nickel-a	luminiu	m bronze	materi	als as w	/ell as Z				

Classifications

Classifications

EN 14640: S Cu 6560

SFA/AWS A5.7 ERCuSi-A

Cu

bal.

≤ 2.95

1.15

OK Autrod CuSi Laser provides a more stable brazing process as well as a superior surface finish.

0.8 - 1.2mm

OK Autrod

CuSi Laser

Copper based

Shielding gas C1 (EN ISO 14175)

Dimensions

1.0 -1.6mm

Type

31

Fluxes for submerged arc welding

	Classifications	Typical	Typical chemical composition all weld metal (%)							
OK Flux 10.61		С	Si	Mn	Cr	Мо	Rp 0.2 (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Basicity index 2.6	EN ISO 14174: S A FB 1 65 DC									
Density	With OK Autrod 12.24	0.06	0.25	1.0		0.5	480	570	26	+20/130 0/120 -20/80
~ 1.1 kg/dm³ Grain size	EN ISO 14171-A: S 42 2 FB S2Mo SFA/AWS A5.23: F7A4-EA2-A2									-40/35
0.2 - 1.6 mm	With OK Autrod 12.22	0.08	0.35	1.0			440	520	30	-20/120
Slag type Fluoride-basic	EN ISO 14171-A: S 38 4 FB S2Si SFA/AWS A5.17: F7A8-EM12K									-30/85 -40/75 -62/35
Dolority	With OK Autrod 12.32	0.09	0.3	1.4			475	560	28	-20/120
Polarity DC+	EN ISO 14171-A: S 42 5 FB S3Si SFA/AWS A5.17 F7A6-EH12K									-40/100 -50/55 -62/40
Alloy transfer										

Slightly Si and no Mn alloying OK Flux 10.61 is an agglomerated, high-basic flux for submerged arc welding. It is used for single and multi-run butt welding when demands on impact toughness values are high. This is a good alternative to other high basic fluxes when welding is done with single wire DC+. The flux alloys very little Si and Mn to the weld metal and thus it is well suited for welding of unlimited plate thicknesses. OK Flux 10.61 is used in general construction, pressure vessel construction, power generation and transport industries. Due to the non-alloying effect, OK Flux 10.61 is designed for

suitable alloying wire. OK Flux 10.61 can be used on DC±.

	Classifications	Typical ch	emical com	position all w	veld metal (%)	Typical med	hanical prope	erties all weld me	etal
OK Flux 10.71		С	Si	Mn	Rp 0.2 (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)	AW/ SR
Basicity index 1.5	EN ISO 14174: SA AB 1 67 AC H5								
Density	With OK Autrod 12.10	0.04	0.3	1.0	360	465	30	-20/95	AW
~ 1.2 kg/dm³	EN ISO 14171-A: S 35 4 AB S1 SFA/AWS A5.17: F6A4-EL12							-30/75 -40/65	
Grain size 0.2 - 1.6mm	With OK Autrod 12.20	0.05	0.3	1.4	410	510	29	-20/80	AW
Slag type Aluminate-	EN ISO 14171-A: S 38 4 AB S2 SFA/AWS A5.17: F7A4-EM12							-40/55	
basic	With OK Autrod 12.22	0.05	0.5	1.4	425	520	29	-20/100	AW
Polarity DC+/AC	EN ISO 14171-A: S 38 4 AB S2Si SFA/AWS A5.17: F7A5-EM12K							-40/60	
	With OK Autrod 12.30	0.09	0.4	1.7	480	580	29	-20/90	AW
Alloy transfer Slightly Si and	EN ISO 14171-A: S 46 3 AB S3							-30/60	
moderate Mn	With OK Autrod 12.32	0.09	0.5	2.0	475	560	28	0/130	AW
alloying Hydrogen	EN ISO 14171-A: S 46 4 AB S3Si SFA/AWS A5.17 F7A5-EH12K							-20/95 -40/65 -46/40	
~ 5 HDM									

OK Flux 10.71 is a basic agglomerated, slightly Si- and Mn-alloying flux for submerged arc welding, specially designed for fillet welding and for the single- and multi-pass butt welding of mild, medium and high tensile steels. OK Flux 10.71 is of the aluminate basic type and, for this slag system, it has a very high current-carrying capacity on both AC and DC and very good operating characteristics. OK Flux 10.71 is ideally suited to narrow gap welding due to the excellent slag detachability and smooth side-wall blending.

Classifications	Typical chemical composition	all weld metal (%)

OK Flux 10.76		С	Si	Mn	Rp 0.2 (MPa)	Rm (MPa)	A4/A5 (%)	CVN (°C/J)
Basicity index 1,5	EN ISO 14174: S A AB 1 89 AC							
1,5	With OK Autrod 12.10							
Density 1.2 kg/dm³	EN ISO 14171-A: S 42 3 AB S1 SFA/AWS A5.17: F7A4-EL12	0.06	0.5	1.9	450	540	25	0/100 -20/70
Grain size 0.2 - 1.6 mm								-30/55 -40/45

Slag type

Aluminatebasic

Polarity DC+/A

Alloy transfer High Si and very high Mn alloying

ly Mn alloying

OK Flux 10.76 is an agglomerated, basic flux for submerged arc welding. It is especially suited for welding joints with high dilution, such a I-joints with one run from each side and fillet welds. Due to its high alloying of mainly Mn, it creates a weld metal with outstanding toughness values in these joint types. It is used for single and multi-wire procedures and works equally well on DC and AC current. On multi-pass welding the number of passes is limited and the plate thickness should not exceed about 20mm. OK Flux 10.76 is recommended tobe used with OK Autrod 12.10. The main application area for OK Flux 10.76 is in shipbuilding where it is used preferably for two run double-sided welding. However, it is also utilised in other market segments where joints with high dilution or with only a few passes are welded, such as the production of pressure vessels, in the transport industry and in general construction.

		<i>7</i> 1			. ,			
OK Flux 10.81		С	Si	Mn	Rp 0.2 (MPa)	Rm (Mpa)	A4/A5 (%)	CVN (°C/J)
Basicity index	EN ISO 14174: S A AR 1 97 AC							
0.6	With OK Autrod 12.10							
Density 1.25 kg/dm ³	EN ISO 14171-A: S 42 A AR S1 SFA/AWS A5.17: F7AZ-EL12	0.08	0.8	1.2	450	540	25	20/50 0/30
Grain size	With OK Autrod 12.20							
0.2 - 1.6 mm	EN ISO 14171-A: S 46 0 AR S2 SFA/AWS A5.17: F7A0-EM12	0.07	0.8	1.5	510	610	25	20/80 0/60
Slag type Aluminate-		_						-18/40
rutile	With OK Autrod 12.22							
Polarity	EN ISO 14171-A: S 50 A AR S2Si SFA/AWS A5.17: F7AZ-EM12K	0.07	0.9	1.5	530	610	24	20/60
DC+ / AC	With OK Autrod 12.30							
Alloy transfer Very high Si	EN ISO 14171-A: S 50 0 AR S3	0.08	0.7	1.75	540	640	25	20/80 0/60
and moderate-								

OK Flux 10.81 is an agglomerated, low-basicity flux. The benefits of this flux are the smooth surface finish and excellent slag detachability. It is intended for a limited number of passes and plate thickness up to approx. 25mm. It is used for single and multi-wire procedures such as tandem and twin-arc welding. Concave fillet welds with an excellent washing on the sidewalls are created with this flux as well as attractive butt and overlap welds. It works equally well on DC and AC current and the high alloying of Si makes it well suited for high speed welding. Due to its good weldability, OK Flux 10.81 is often used in the production of pressure vessels and spiral welded water pipes. The excellent sidewall wetting, which is preferred for dynamic loads in horizontal fillet welds is made use of in general construction, beam fabrication, the automotive industry and tube to fin welding in the production of membrane wall panels. In many applications where the appearance of the weld bead or the nice washing on the sidewalls in fillet welds are the main requirements, OK Flux 10.81 is chosen.

Fluxes for submerged arc welding

	Classifications	Typical chen	Typical chemical composition all weld metal (%)							
OK Flux 10.87		С	Si	Mn	Rp 0.2 (MPa)	Rm (Mpa)	A4/A5 %)	CVN (°C/J)		
Basicity index	EN ISO 14174: S A AR 1 95 AC									
0.4	With OK Autrod 12.10									
Density 1.2 kg/dm³	EN ISO 14171-A: S 35 A AR S1 SFA/AWS A5.17: F6AZ-EL12	0.05	0.8	0.6	370	470	25	0/25 +20/50		
Grain size 0.2 - 1.6 mm	With OK Autrod 12.20									
Slag type Aluminate-	EN ISO 14171-A: S 42 A AR S2 SFA/AWS A5.17: F7AZ-EM12	0.05	0.8	1.0	410	500	25	0/25 +20/50		
rutile	With OK Autrod 12.22									
Polarity DC+/AC	EN ISO 14171-A: S 42 A AR S2Si SFA/AWS A5.17: F7AZ-EM12K	0.05	0.9	1.0	420	510	25	0/25 +20/50		
Alloy transfer										

Alloy transfer Very high Si alloying, neutral on Mn

OK Flux 10.87 is an agglomerated, low-basicity flux for submerged arc welding. It gives perfect wetting and excellent weld bead appearance in butt, overlap and fillet welds at high welding speeds.

OK Flux 10.87 is used for single and multi-wire procedures and works equally well on DC and AC current. It is intended for a limited number of passes and plate thickness up to 25mm.

The main application area for OK Flux 10.87 is in the production of air compressor tanks, LPG bottles and fire extinguishers. A flat weld bead and smooth, clean surface with excellent slag detachability is achieved, also when the second run has been pre-heated by the first run. Other industries with similar requirements also make use of OK Flux 10.87, including general construction and the automotive industry.

Solid/cored wires for hardfacing

	Classifications	Typical (chemical o	compositio	n all weld metal (%)
OK Autrod 13.91		С	Si	Mn	Cr
Weld metal hardness 50-60HRC	EN 14700 SFe8.	0.45	3.0	<0.8	9.0

Shielding gas CO,

Welding current

Size (mm) 0.8-1.6

OK Autrod 13.91 is a copper coated, low-alloyed solid GMAW wire used for hardfacing and building up highly wear-resistant layers on tools and machinery parts, driving rollers, digging tools and so on. The as welded hardness is between 50 to 60 HRC usually in the

	Classifications	Typical	chemical c	omposition a	all weld me	etal (%)	
odur 14.70		С	Si	Mn	Cr	Мо	

OK Tubro Comments: Hv 30 500 - 700 EN 14700 T Z Fe14 0.9

Welding current DC+

OK Tubrodur 14.70 is a self shielded Cr carbide type flux-cored wire. The weld metal is extremely resistant to abrasive wear by gritty fine grain materials sush as earth, ore, clay, etc. Typical applications are the hardfacing of bucket lips, sugar points, mining and earth moving equipment, scraper blades etc. A maximum of 2-3 layers should be deposited.

	Classifications	cations Typical chemical composition all weld meta						
OK Tubrodur 14.71		С	Si	Mn	Ni	Cr		
Yield stress	EN 1/700: TEe10	0.15	0.6	5.5	8.7	10.1		

400MPa

Tensile strenght 600MPa

A stainless, 18.8.6Mn, self shielded, tubular wire for cladding and joining 13% Mn steels

Elongation 35%

Welding current

DC+

and steels with limited weldability. It is also useful for buffer layers prior to hardfacing.

Classifications Typical chemical composition all weld metal (%)

OK Tubrodur 15.40	С	Si	Mn	Cr		
Weld metal hardness 32 - 40 HRC	EN 14700: TFe1	0.2	1.0	1.4	1.4	

Shielding gas CO₂

Welding current DC+

OK Tubrodur 15.40 is a CO₂ shielded, flux-cored wire for the hardfacing deposit of a manganese-chromium- molybdenum-alloyed weld metal. It is used for surfacing of wheel runners, wheels and rollers for conveyor belts, wheels for mine trucks, rolls and shafts.

Size (mm)

Solid/cored wires for hardfacing

	Classifications	Typical chemical composition all weld metal (%)						
OK Tubrodur 15.52		С	Si	Mn	Cr	Мо	Al	
Weld metal hardness 50-60HRC	EN 14700: TFe6 Sepros: UNA 485184	0.4	0.3	1.2	5.0	1.2	0.6	
Shielding gas Self-shielded Welding current DC +	OK Tubrodur is a self-shielded, flux cored wire for hardfacing with a hardness of 55 - 60 HRC. It is designed for hardfacing feed screws, mixer blades and vessels and ring grooves on diesel engine pistons.							
Size (mm) 1.6, 4.0								

	Classifications	Typical	Typical chemical composition all weld metal (%)						
OK Tubrodur 15.60		С	Si	Mn	Ni	Al			
Weld metal hardness aw 200 - 250 HRC wh 400 - 500 HRC	EN 14700: TFe9	0.8	0.6	11.7	3.0	0.6			
wh 400 - 500 HRC									

Shielding gas Self-shielded

Welding current DC +

Size (mm)

OK Tubrodur 15.60 is a self-shielded, flux cored wire of the austenitic-manganese type. The workhardening characteristics and extremely though crack-resistant weld metal ensure that OK Tubrodur 15.60 is the ideal solution for rebuilding 13Mn steels, normally found in crusher jaws, swing hammers and numerous parts of earth moving, mining and quarring equipment.

	Typica	Typical chemical composition all weld metal (%)						
OK Tubrodur 15.65		С	Si	Mn	Ni	Cr	Мо	
Weld metal hardness, aw 200 - 250 HRC wh 400 - 500 HRC	EN 14700: TFe9	0.3	0.6	13.5	1.8	15.5	0.8	
Welding current OK Tuhrodur 15.65 is a flux-cored wire for self- or CO, shielding depositing a								

Welding current DC +

Size (mm)

or tubrodur 15.65 is a flux-cored wire for sein- or CO₂ shielding, depositing a martensitic-austenitic, work-hardening deposit. It can be used for rebuilding of mild, low-alloy and 13Mn steels. The weld metal combines excellent abrasion and impact resistance and is suitable for applications such as crusher jaws and hammers, railway point frogs, ripper teeth and wear plates.

	Classifications		Typica	Typical chemical composition all weld metal (%)								
OK Tubrodur 15.84			С	Si	Mn	Cr	Мо	w	Co	V		
Weld metal hardness 500 - 600 Hv 49 - 55 Rc	EN 14700 DIN 8555	T Fe3 MF3-50T	0.04	1.1	1.1	1.8	0.4	8.0	2.0	0.4		
Shielding gas CO_2	OK Tubro	odur 15.84 is a me	etal cored	d wire fo	or new m	anufact	ure and	repair o	of tools	for		

Welding current DC +

Size (mm) 1.6

OK Tubrodur 15.84 is a metal cored wire for new manufacture and repair of tools for cold and hot work up to 550°C operating temperature, such as shredders, forging dies, rollers, spikes, hotshear blades, etc. High temperature hardness of alloy with cobalt and tungsten. Apply to multiple layers carbon steels, alloy buffer layers with otherwise present group Fe10 to FE12. Preheat according to base material: 350 - 600°C heat treatment - hardening (0ii) 1100 - 1150°C - 550°C annealing / 1 - 2 h - annealing 850°C / 2 - 3h.

400A CC/CV construction model multi-process inverter

SMAW, GMAW, GTAW, self- and gas shielded FCAW

Origo™ Mig 4004i/ A44

OrigoMig 4004i is an ideal partner when it comes to efficient production indoor or outdoor, installation on site or all type of repair & maintenance welding. The power source is compact and sturdy with a chassis made of galvanised steel. This is a robust material that withstands rough treatment. Delivery includes 5 m mains cable incl plug.

	Origo™ Mig 4004i/A44
Mains supply, V/ Hz	3x380-440 +/- 10%, 50/60
Fuse, slow, A	25
Mains cable, Ø mm²	4x4
Max output at 60% duty cycle, A	400/36
Max output at 100% duty cycle, A	300/32
Current range MIG, A	20-400
Current range MMA DC, A	16-400
Current range TIG DC, A	4-400
Open circuit voltage	55/<35
(VDR off/ on), V	
Power factor at max current	0.94
Weight, kg	46

A44

- MMA, MIG/ MAG (CV-mode) or TIG (LiveTIG start)
- Electrode type
- Quick setting of electrode characteristics
- Current
- Digital V/ A meter
- Hot start MMA
- Arc Force
- Stepless inductance (CV-mode)
- Two memories
- Panel or remote operation
- VRD indicator

MIG/MAG equipment Power sources and wire feeders

Mig4002c

A sturdy and robust switching converter (chopper) power source intended for heavy duty applications. MIG/MAG and MMA are the main processes − process selection being related to the choice of control panel, Origo™ MA23, Origo™ MA24, Aristo® U6 or even the flagship Aristo® U8₂. Well proven technology together with ESAB developed software provides high reliability and outstanding welding performance. IP 23 − designed for outdoor use making it safe on all work sites

	Mig 4002c	Mig 5002c	Mig 6502c
Fuse, slow, A	25	35	50/60
Mains supply V/Hz	3x400	415	50/60
	3x230/400	415/500	50
	3x230440	460	60
Mains cable, Ø mm²	4X4	4X6	4X10
Max output at 60% duty cycle, A/V	400/34	500/39	650/44
Max output at 100% duty cycle, A/V	310/30	400/34	500/39
Open circuit voltage, V	62 MIG/ MAG,68 MMA	62 MIG/ MAG,68 MMA	62 MIG/ MAG,68 MMA
Weight, kg	149	185	222

Aristo® Feed 3004/4804, U6/U8,

- Suitable for Mig 3001i/4001i/U4000i/5000i/ U5000i/4002c/5002c and 6502c.
- 2/4 stroke, simplifies handling of the welding torch.
- Creep start, gas pre-flow and hot start provide a soft, more direct start with less spatter.
- Crater filling, adjustable burn-back time and post gas provides a smooth finish, extend the service life of the contact tip and guarantee no cracks at the end.
- Pre-programmed synergic lines, to ensure optimal settings.
- Possibility to create synergic lines (Aristo® U8₂).
- Memory for 10 (U6) or 255 (U8₂) parameter sets
- Quick connectors shortest possible set-up times.
- ESAB LogicPump ELP, secures the automatic start of the water pump by connecting a water-cooled welding torch.
- TrueArcVoltage System™, measures the correct arc voltage value, independent of the length of the connection cable, return cable or welding torch.

	Aristo® Feed 3004	Aristo® Feed 4804
Power supply, V/Hz	42/50-60	42/50-60
Wire feed, m/min	0.8-25.0	0.8-25.0
Max spool dimension/weight, Ø mm/kg	300/18	300/18
Wire Ø, unall. solid	0.6-1.6	0.6-2.4
Wire Ø, SS	0.6-1.6	0.6-2.4
Wire Ø, Al	1.0-1.6	1.0-2.4
Wire Ø, CW	0.8-1.6	0.8-2.4
Weight, kg	15	19

MIG/MAG equipment Compact inverters

Caddy® Mig C200i

Portable MIG/MAG welding unit with built-in wire feeder for Ø200 mm spools. For repair, maintenance and assembly welding of mild steels, aluminium and stainless steels as well as brazing. This easy to use, intelligent and powerful unit offers excellent welding properties and is easy to take along to the job at hand. Great if you are welding in the workshop or on the move. Equipped with QSet™ − intelligent setting of short arc welding parameters giving a perfect arc for all material and gas combi-nations. Single-knob control for consistent and optimal weld quality for all plate thicknesses. IP 23 − designed for outdoor use making it safe on all work sites

Origo™ Mig C3000i MA24 Aristo® Mig C3000i U6

A compact machine with integrated wire feeder for professional use in general applications up to 300 A. QSet™ is an integrated function in the MA24 panel which provides a unique way of setting welding parameters for short arc. QSet™ is smart - give it a few seconds of test welding and watch how the short arc stabilizes automatically. The optimised setting is maintained regardless of the wire feed speed setting. IP 23 – designed for outdoor use making it safe on all work sites

	Caddy® Mig C200i
Mains supply, V/Hz	1x230 / 50/60
Fuse, slow, A	16
Mains cable, Ø mm²	3x1.5
Setting range, A	30-200
Max output at 25% duty cycle, A/V	180/23
Max output at 100% duty cycle, A/V	100/19
Wire feed, m/min	2-12
Open circuit voltage, V	60
Power factor at max. current	0.99
Weight, kg	11.5

	Origo™ Mig C3000i
Mains supply, V/Hz	3x400 / 50/60
Max output at 35% duty cycle, A/V	300/29V
Max output at 60% duty cycle, A/V	240/24V
Max output at 100% duty cycle, A/V	200/24V
Wire feed, m/min	0.8-25.0
Wire Ø, unall. solid	0.6-1.2
Wire Ø, SS	0.6-1.2
Wire Ø, Al	1.0-1.2
Wire Ø, CW	0.8-1.2
Open circuit voltage (VRD off/on), V	60/<35
Weight, kg	38

TIG equipment DC Inverters and AC/DC Inverters

Caddy® Tig 1500i/2200i, TA34

Compact and portable inverter for advanced TIG welding, with HF or Lift-Arc™ start, and MMA.

- Durable and impact resistant design with OKC 50 cable connectors.
- Easy to operate. Graphical parameter setting for advanced TIG welding.
- Digital display for settings.
- Remote control possibility.
- Pulsed TIG giving increased control of heat input and weld pool.
- Two memories for storing of settings.
- Micro Pulse minimising heat affected zone especially on thin
 material
- Adjustable slope up/down and gas post-flow.
- ArcPlus™ II regulator for better MMA welding characteristics and higher weld quality with less after treatment.
- Caddy[®] Tig 1500i welds most electrodes from Ø 1.6 3.2 mm and some 4 mm electrodes.
- Caddy® Tig 2200i welds most electrodes from Ø 1.6 4 mm. Micro Pulse (TA34 AC/DC) minimising
- Can operate with extra long mains cables, 100 m.
- IP 23 designed for outdoor use making it safe on all work sites

Caddy® Tig 2200i AC/DC

Compact and portable inverter for AC/DC TIG welding, with HF or LiftArc $^{\text{TM}}$ start, and MMA.

- Durable and impact resistant design with OKC 50 cable connectors.
- Easy to operate.
- · Digital display for settings.
- Plate thickness setting for TIG (TA33 AC/DC). Set the plate thickness and the machine will control the parameters.
- Adjustable slope down and gas postflow (TA33 AC/DC).
- DC pulsed TIG (TA34 AC/DC) giving increased control of heat input and weld pool.
- Two memories (TA34 AC/DC) for storing of settings.
- Micro Pulse (TA34 AC/DC) minimising heat affected zone especially on thin material.

- Adjustable slope up/down and gas post-flow (TA34 AC/DC).
 Remote control possibility.
- ArcPlus II regulator for better MMA welding characteristics and higher weld quality with less after treatment.
- All types of material, including aluminium, and thickness up to 5 mm
- Can operate with extra long mains cables, up to 100 m, thanks to the built-in PFC circuit.
- IP 23 designed for outdoor use making it safe on all work sites.

	Caddy [®] Tig 1500i, TA34	Caddy [®] Tig 2200i, TA33
Mains supply, V/Hz	1x230 / 50/60	1x230 / 50/60
Fuse, slow, A	16	16
Mains cable, Ø mm²	3x2.5	3x2.5
Max output at 25% duty cycle, TIG, A/V	150/16	220/18.8
Max output at 60% duty cycle, TIG, A/V	120/14.8	150/16.0
Max output at 100% duty cycle, TIG, A/V	110/14.4	140/15.6
Current range TIG DC, A	3 - 150	3 - 220
Current range MMA DC, A	4 - 150	4 - 170
Open circuit voltage (VRD off/on), V	46-60/<35	46-60/<35
Power factor at max current	0.98	0.99
Weight, kg	9.2	9.4

	Caddy [®] Tig 2200i AC/DC, TA34 AC/DC	Caddy [®] Tig 2200i AC/DC, TA33 AC/DC
Mains supply, V/Hz	1x230 / 50/60	1x230 / 50/60
Fuse, slow, A	16	16
Mains cable, Ø mm²	3x2.5	3x2.5
Max output at 20% duty cycle, TIG, A/V	220/18.8	220/18.8
Max output at 60% duty cycle, TIG, A/V	150/16.0	150/16.0
Max output at 100% duty cycle, TIG, A/V	140/15.6	140/15.6
Open circuit voltage VRD (off/on), V	46-60/<35	46-60/<35
Setting range TIG AC/DC	3-220	3-220
Setting range MMA	4-160	4-160
Power factor at max. current	0.99	0.99
Weight, kg	15	15

MIG/MAG equipment Inverters and choppers

Origo™ Mig 3001i A24 Mig 3001i/3001iw

Mig 3001i is an ideal partner when it comes to efficient production or prefabrication of high alloyed materials with a very high demand on welding performance. The power source is compact and sturdy with a chassis made of galvanised steel. This is a robust material that withstands rough treatment. The power source is optimised to operate together with the wire feeders Origo™ Feed 3004/4804, Aristo® Feed 3004/4804. Connection cables up to 50 m provides a working radius of up to 54.5 meter to suit all your individual welding needs. Origo™ Mig 3001i A24 can be operated as an MMA power source. When a wire feed unit is connected it turns into a MIG/MAG unit. IP 23 – designed for outdoor use making it safe on all work sites

	Origo™ Mig 3001i, A24 – Mig 3001i/3001iw
Mains supply, V/Hz	3x400 / 50/60
Fuse, slow, A	16
Mains cable, Ø mm²	4x4
Max output at 35% duty cycle, A/V	300/29.0
Max output at 60% duty cycle, A/V	240/26.0
Max output at 100% duty cycle, A/V	200/24.0
Current range MIG, A	16-300
Current range MMA DC, A	16-300
Current range TIG DC, A	4-300

Mig 4002c/5002c/6502c

Mig 4002c, 5002c, and 6502c are sturdy and robust switching converter (chopper) power sources intended for heavy duty applications. MIG/MAG and MMA are the main processes. The power sources operate with the wire feeders Origo™ Feed 3004/4804 and Aristo® Feed 3004/4804 which can be equipped with control panels Origo™ MA23, Origo™ MA24 or Aristo® U6. Aristo® U8₂ can be used for very advanced requirements. Well proven technology together with ESAB developed software provides high reliability and outstanding welding performance.

IP 23 – designed for outdoor use making it safe on all work sites

	Origo™ Mig 4002c	Origo™ Mig 5002c	Origo™ Mig 6502c
Mains supply, V/Hz	3x400-415, 50/60	3x230/400- 415/500, 50	3x230/440- 460, 60
Fuse, slow, A	25	35	50
Mains cable, Ø mm²	4X4	4X6	4X10
Max output at 60% duty cycle, A/V	400/34	500/39	650/44
Max output at 100% duty cycle, A/V	310/30	400/34	500/39
Open circuit voltage V	62 MIG/ MAG,68 MMA	62 MIG/ MAG,68 MMA	62 MIG/ MAG,68 MMA
Weight, kg	149	185	222

MIG/MAG equipment Semi-automats, inverters

Aristo® Mig 5000i

- Multi-process power source combining MIG/MAG, pulse MIG, MMA and carbon arc gouging
- Reliable, smooth starts and ends, supported by efficient hot-start and crater-fill functions.
- Efficient man-machine communication by the userfriendly control panels, U6 or Aristo[®] U8_a
- Wide range of pre-programmed syneric lines for any material or gas combination.
- Memory for 10 (U6) or 255 (Aristo[®] U8₂) welding parameters.
- ESAB LogicPump, ELP, secures the automatic start of the water pump by connecting a water-cooled welding torch.
- TrueArcVoltage System™, measures the correct arc voltage value, independent of the length of the connection cable, return cable or welding torch
- Dust filter to handle tough, dirty environments and avoid grinding dust and metal particles inside the chassis.
- Operates with the separate wire feeders Aristo® Feed 3004/4804, U6 and Aristo® U8₂, Aristo® RoboFeed 3004w and Aristo® YardFeed 2000.

	Aristo® Mig 5000i
Mains supply, V/Hz	3x400 / 50/60
Fuse, slow, A	35
Mains cable, Ø mm²	4x6
Max output at 60% duty cycle, MMA, A/V	500/40
Max output at 100% duty cycle, MMA, A/V	400/36
Current range MIG, A	16-500
Current range MMA DC, A	16-500
Open circuit voltage (VRD off/on), V	59/<35
Weight, kg	68

Aristo® Mig U4000i/U5000i

- Multi-process power source combining MIG/MAG, pulse MIG, MMA and carbon arc gouging plus DC-TIG, pulse DC-TIG with HF-Start in the U-version
- Efficient man-machine communication by the user-friendly control panel U6 or Aristo® U8₉
- Wide range of pre-programmed synergic lines.
- Memory for 10 (U6) or 255 (Aristo® U8₂) welding parameters
- ESAB LogicPump, ELP, secures the automatic start of the water pump by connecting a water-cooled welding torch to the wire feeder or a water-cooled TIG torch
- TrueArcVoltage System[™], measures the correct arc voltage value, independent of the length of the connection cable, return cable or welding torch
- Dust filter to handle tough and dirty environments and avoid grinding dust and metal particles inside the chassis
- The Aristo® Mig U4000i/U5000i operate with the separate wire feeders Aristo® Feed 3004/4804 U6 and Aristo® U8₂.

	Aristo [®] Mig U4000i	Aristo [®] Mig U5000i
Mains supply, V/Hz	3x400 / 50/60	3x400 / 50/60
Fuse, slow, A	25	35
Mains cable, Ø mm²	4x4	4x6
Max output at 35% duty cycle, MMA, A/V	400/36	-
Max output at 60% duty cycle, MMA, A/V	320/33	500/40
Max output at 100% duty cycle, MMA, A/V	250/30	400/36
Current range MIG, A	20-400	16-500
Current range MMA DC, A	16-400	16-500
Current range MMA DC, A	4-400	4-500
Current range TIG DC, A	0.98	0.99
Open circuit voltage (VRD off/on), V	58/<35	959/<35
Weight, kg	63.5	71

MIG/MAG equipment Aristo[®] RoboFeed 3004HW

Small feeder for hollow wrist robots

Aristo® RoboFeed 3004HW is especially designed for the use with hollow wrist robots that have the torch package inside the robot arm. Low weight and small size are needed to allow those robots to use their high accelerations and perform all motions. Aristo® RoboFeed 3004HW is a completely enclosed feeding unit providing operational functions for gas purge and wire inching. The PCB is separated from the feeder housing in order to provide a small unit with low weight. It sits inside the Aristo® FeedControl box that is easier to reach for maintenance.

Technical data RoboFeed 3004 HW	1
Power supply, V, Hz	60 DC (PWM),
Max load @ 60% dc	500 A
Max load @ 100% dc	280 A
Drive mechanism	4 WD
Drive rollers, mm	30
Wire feed speed, m/min	0.8 - 30.0
Dimensions lxwxh, mm	251 x 182 x 221
Weight, kg	5.4
Speed control	Pulse encoder
Wire dimensions:	
steel	0.6-1.6
stainless steel	0.6-1.6
aluminium	1.0-1.6
cored wire	0.8-1.6
Enclosure class	IP 2x
Standards	IEC 60974-5, IEC 60974-10

Aristo® U8,/W8,

Aristo® U8₂ creates a whole new universe of possibilities; maximum functionality, minimum complexity. Five function buttons, single menu and "Enter" button and three setting wheels cover every option. Large bright easy-view LED display and knurled setting wheels for simple gloves-on, visor-down operation. Aristo® U8₂ or Aristo® U8₂ Plus, the all-new U8₂ control unit is the key to a fully integrated welding system. Full USB connectivity and a broad choice of advanced add-on modules Aristo® W8₂ (DeviceNet, Profibus, CANopen and Ethernet) for comprehensive Fieldbus and LAN communication. Optional synergic line packs for special materials can be offered on request.

Aristo® FeedControl HW is equipped with a box to connect welding cable and water hoses outside the electronics compartment.

MIG/MAG equipment Analogue choppers and wire feeders

Origo™ Mig 402c/502c/652c

Origo™ Mig 402c/502c/652c are sturdy and robust switching converter (chopper) power sources intended for heavy duty MIG/MAG welding, MMA welding and air arc gouging. The power sources operate with the wire feeders Origo™ Feed 304/484 which are equipped with the control panel Origo™ M13.

Origo™ Mig 502c / 652c are fitted with the control panel A13 that allows MMA welding and arc-air gouging without a wire feeder. Well proven technology together with ESAB developed software provides high reliability and outstanding welding performance. IP 23 – designed for outdoor use making it safe on all work sites

	Origo™ Mig 402c	Origo™ Mig 502c	Origo™ Mig 652c
Mains supply, V/Hz	3x400-415, 50/60	3x230/400- 415/500, 50	3x230/440- 460, 60
Fuse, slow, A	25	35	50
Mains cable, Ø mm²	4X4	4X6	4X10
Max output at 60% duty cycle, A/V	400/34	500/39	650/44
Max output at 100% duty cycle, A/V	310/30	400/34	500/39
Open circuit voltage V	53-70	53-70	53-70
Weight, kg	158	194	228

Origo™ Feed 304/484, M13 -19 pole

- Suitable for Mig 402c/502c and 652c.
- 2/4 stroke and creep start, simplifies start/stop and the gradual feed of the wire helps to optimise the starts.
- Crater filling, eliminates cracks and gives high quality welds.
- Adjustable burn-back time to correct stick-out and reduce wear of contact tips.
- Digital V/A meters.
- Quick connectors- shortest possible set-up times.
- ESAB LogicPump, ELP, secures automatic start of water pump by connection of a water cooled welding torch.
- TrueArcVoltage[™] system, measures the correct arc voltage value independent of the length of the interconnection cable, return cable or welding torch.

	Origo [™] Feed 304	Origo [™] Feed 484
Power supply, V/Hz	42, 50/60	42, 50/60
Wire feed, m/min	1.9-25.0	1.9-25.0
Max spool dimension/weight, Ø mm/kg	300/18	300/18
Wire Ø, unall. solid	0.6-1.6	0.6-2.4
Wire Ø, SS	0.6-1.6	0.6-2.4
Wire Ø, Al	1.0-1.6	1.0-2.4
Wire Ø, CW	0.8-1.6	0.8-2.4
Weight, kg	15	19

MIG/MAG equipment Digital choppers and wire feeders

Mig 4002c/5002c/6502c

work sites

Mig 4002c, 5002c, and 6502c are sturdy and robust switching converter (chopper) power sources intended for heavy duty applications. MIG/MAG and MMA are the main processes. The power sources operate with the wire feeders Origo™ Feed 3004/4804 and Aristo® Feed 3004/4804 which can be equipped with control panels Origo™ MA23, Origo™ MA24 or Aristo® U6. Aristo® U82 can be used for very advanced requirements. Well proven technology together with ESAB developed software provides high reliability and outstanding welding performance.

IP 23 - designed for outdoor use making it safe on all

	Mig 4002c	Mig 5002c	Mig 6502c
Mains supply, V/Hz	3x400-415, 50/60	3x230/400- 415/500, 50	3x230/440- 460, 60
Fuse, slow, A	25	35	50
Mains cable, Ø mm²	4X4	4X6	4X10
Max output at 60% duty cycle, A/V	400/34	500/39	650/44
Max output at 100% duty cycle, A/V	310/30	400/34	500/39
Open circuit voltage V	62 MIG/ MAG,68 MMA	62 MIG/ MAG,68 MMA	62 MIG/ MAG,68 MMA
Weight, kg	149	185	222

Origo™ Feed 3004/4804, MA23/MA24

The sturdy design of the ESAB Origo[™] Feed 3004 and 4804, with their galvanised metal casing, makes these units ideal for use in tough environments. Suitable for Mig 3001i/4001i/5000i/4002c/5002c/6502c.

Electronically controlled feeding gives an accurate and stable arc and the 4-wheel feeder mechanism with grooves in both the feed roll and pressure roll gives a stable feed with low wear on the wire, all of which helps to avoid operational disturbances.

	Origo™ Feed 3004	Origo™ Feed 4804
Power supply, V/Hz	42, 50/60	42, 50/60
Wire feed, m/min	0.8-25.0	0.8-25.0
Max spool dimension/weight, Ø mm/kg	300/18	300/18
Wire Ø, unall. solid	0.6-1.6	0.6-2.4
Wire Ø, SS	0.6-1.6	0.6-2.4
Wire Ø, Al	1.0-1.6	1.0-2.4
Wire Ø, CW	0.8-1.6	0.8-2.4
Weight, kg	15	19

MIG/MAG equipment MIG torches

PSF™ self-cooled

There are four different types of self-cooled PSFTM welding torches and they can be ordered with two different hose lengths. The handles are ergonomically curved. A range of different angled swan necks provides easy access to all the different welding positions and a comfortable working position. PSFTM 405 is available with a built-in, three-step, remotecontrol switch (RS3).

PSF™ water-cooled

The water-cooled PSF™ torches are probably the coolest welding torches on the market. The excellent cooling allows for a smaller swan neck with no reduction in current capacity, plus reduced wear part consumption. A swivel at the back of the handle reduces strain on the welder's wrist. Together with the opportunity to use different angled swan necks, this provides easy access to all welding positions and a comfortable working position. Both torches are available with a built-in, three-step, remotecontrol switch (RS3).

Technical data				
	PSF™ 250	PSF™ 305	PSF™ 405/ 405 RS3	PSF™ 505
Max load at 60% duty cycle, A	250	315	380	475
Wire Ø, unall. solid	0.6-1.0	0.8-1.2	0.8-1.6	1.0-2.4
Wire Ø, SS	0.6-1.0	0.8-1.2	0.8-1.2	1.0-1.6
Wire Ø, Al	1.0	1.0-1.2	1.0-1.6	1.0-2.4
Wire Ø, CW	1.0	1.0-1.2	1.0-1.6	1.2-2.4

Technical data				
	PSF™ 410w/ 410w RS3	PSF™ 510w/ 510w RS3		
Max load at 100% duty cycle, A	400	500		
Wire Ø, unall. solid	0.8-1.6	1.0-2.4		
Wire Ø, SS	0.8-1.6	1.0-1.6		
Wire Ø, Al	1.0-1.6	1.2-2.4		
Wire Ø, CW	0.9-1.6	0.9-2.0		

TXH™ TIG Torches

Standard packages for common applications

TXH™ torches are made with the welder in mind...

The major characteristics of the TXH™ torch program is its quality. The torches are designed to provide the utmost in convenience, versatility and ergonomics to the user.

You can choose between air-cooled and water cooled, with or without gas-valve and with or without a flexible neck to suit your individual application.

- TXH™ Air cooled from 120A to 200A at 60% duty cycle argon.
- TXH[™] Water cooled in 250A to 400A at 100% duty cycle argon.
- Models will be available with rigid, valve, flexible head and remote control.
- Cable connections will be available in 4m and 8m lengths.
- Torch heads lightweight and durable.
- Manufactured with high temperature resistant silicone rubber insulation.
- All copper components ensure cooler running temperatures and maximum current capacity.
- Ergonomic handle system with Integrated dual soft grips ensure the handle remains in place with minimal grip pressure.
- Knuckle joint improved manoeuvrability as positioning of the torch is made easier by the combination of knuckle joints and a flexible leather section covering the first 800mm of the torch immediately behind the handle.
- · Effective cooling.
- Trigger switch is located in a neutral finger position.
- Adjustment of the welding current with two buttons in the handle marked '+' and '-' on the TXH™ remote series.

Manual plasma cutting equipment Plasma cutting packages

ESP 150

This heavy-duty, water-cooled plasma cutting and gouging system provides the perfect solution for production cutting and plasma gouging. The ESP 150 can cut up to 51 mm manually and can sever 63 mm, using either an Ar/H₂ mixture or compressed air. Gas options for higher quality cuts, especially on aluminium and stainless, resulting in lower total operating costs – the PT 26 torch cuts with nitrogen or argon-hydrogen mixtures; choice of carbon dioxide, air, nitrogen or oxygen for torch cooling.

	ESP 150
Mains supply, V/Hz	3x380/400-415, 50/60 3x230/460/575, 60
Fuse, slow, A	70
Mains cable, Ø mm²	4x25
Max output at 1000% duty cycle, A/V	140/120
Setting range, A	50-150
Open circuit voltage, V	370
Air, I/min	113/95/95
Pressure, bar	7/7/7
Cutting capacity, Fe mm	40/50
Cutting capacity, SS mm	25/38
Cutting capacity, Al mm	40/50
Weight, kg	308

DEUCE PACK 150 Plasmarc™ System

With 300 amps of plasma cutting and gouging power, this heavy duty system is the ideal choice for foundries, mining, logging equipment repair, wind tower production and other industrial applications.

DEUCE PACK 150 Plasmarc[™] handles even the heaviest materials with the capacity to cut up to 4 in. (101.6 mm) manually. Eliminates carbon arc fumes with excellent plasma gouging capacity—removes up to 77 lbs. (35 kg) of metal an hour.

For exceptional versatility, it separates into two 150 amp consoles for smaller scale applications. Its adjustable output down to 30 amps facilitates cutting of thinner metals. Equipped with the compact, water-cooled PT-26 torch that is smaller than torches used with comparable systems) to ensure operator comfort. The PT-19XLS Torch can be mounted for mechanized applications.

Manual plasma cutting equipment PowerCut[™] 400/700

Easy to use

PowerCut™ 400/700 are made for all types of cutting within production, repair, maintenance and assembly. They are portable and easy to carry to job site to job site or around the shop. The robust design and clear display makes it well adapted to the work day of the operator. They are compatible to work with Engine pypgDriven Generators/Welders when power is not accessible in the field. This together with the compact and lightweight torch gives a user friendly and versatile plasma cutting package that makes the cutting job easier.

Performance

You can use PowerCut[™] 400/700 on all electrically conductive materials eg mild steels stainless steel and conductive materials, e.g. mild steels, stainless steel and aluminium. PowerCut[™] 700 can also be adapted for mechanization cutting.

The piercing function allows you to start cutting in the middle of the work piece instead of starting at the edge. Doing stand off cutting will give you more arc power while the drag cutting capability is great when doingtemplatecuttingandstraightedgecutting, when doing template cutting and straight edge cutting, especially if you are a first time user.

The PowerCut™ 700 Grate Cutting Mode maximizes productivity when cutting grate or mesh material. Quick torch connection together with the CNC Interface allows you switch directly from manual into a cutting table for maximum flexibility.

The torch

The PT-39 is a lightweight torch with an ergonomic handle that provides maximum comfort when tackling the tough jobs. The compact torch design, with a shorter front end, allows maximum arc visibility even in the hard to reach places.

- Voltage Booster –clean thick cuts
- Drag Cutting –makes template cutting & straight edge cutting easier
- PowerCut[™] 700 CNC Interface –manual and cutting table mode
- PowerCut[™] 400 Dynamic Arc Control –helpful when cutting grate or mesh material
- PowerCut[™] 400 Adaptable to mains Voltages 90-280V
- PowerCut[™] 400 Automatic Air Pressure
- Runs off Engine Driven Generator/Welder
- Compact and lightweight torch

Manual plasma cutting equipment Plasma cutting packages

PowerCut™ 900

PowerCut[™] 900 is made for all types of cutting within production, repair, maintenance and assembly. Use on all electrically conductive materials, e.g. mild steels, aluminium and stainless steels. This rugged, easy to use, power efficient unit offers excellent cutting, piercing and gouging properties. It can also be adapted for mechanisation.

	PowerCut™ 900
Mains supply, V/Hz	3x230, 50/60 3x400, 50/60 1/3x208-230, 60 3x460, 60 3x575, 60
Fuse, slow, A	30, 20
Mains cable, Ø mm²	6
Max output at 60% duty cycle, A/V	60/120
Max output at 100% duty cycle, A/V	50/120
Open circuit voltage, V	290
Air, I/min	165
Pressure, bar	5
Cutting capacity, Fe mm	22
Cutting capacity, SS mm	22
Cutting capacity, Al mm	18
Weight, kg	32

PowerCut™ 1600

Powerful plasma cutting package for cutting up to 38 mm material thicknesses. For all types of heavy duty cutting and gouging within production, repair, maintenance and assembly. Use on all electrically conductive materials, e.g. mild steels, aluminium and stainless steels. This rugged, easy to use, power efficient unit offers excellent cutting, piercing and gouging properties. It can also be adapted for mechanisation. Runs off your mains supply together with compressed air or nitrogen.

	PowerCut™ 1600
Mains supply, V/Hz	3x400, 50/60 1/3x208-230/460, 60 3x230/460, 60 3x575, 60
Fuse, slow, A	35
Mains cable, Ø mm²	6
Max output at 60% duty cycle, A/V	90/115
Max output at 100% duty cycle, A/V	70/115
Open circuit voltage, V	280
Air, I/min	236
Pressure, bar	6.2
Cutting capacity, Fe mm	38
Cutting capacity, SS mm	30
Cutting capacity, AI mm	38
Weight, kg	41

Welding automation Components and modules

A2-A6 Process controller PEK

A2-A6 Process controller PEK can be used with CAN controlled ESAB's power sources and motors. It is prepared for submerged arc welding, gas metal arc welding and arc gouging.

- Clear text menus for user friendliness.
- CAN Bus controlled- Selectable welding process.
- Pre-setting of all welding parameters.
- Memory for 255 parameter sets.
- Constant current (CA) or constant wire speed (CW).
- Heat input visible on display.
- Encoder controlled motors for top performance motion control.
- USB slot for data backup and transfer.
- Used welding parameters can be stored directly on a USB memory stick.
- Data transfer to and from PC/LAN- Documentation of used welding parameters on PC or through LAN with WeldPoint™.

A2 S Mini Master

The A2 S Mini Master represents an automatic welding system designed with the emphasis on low weight, compactness and flexible use. The system is built around basic units. The degree of automation and process orientation of the basic unit you choose can be expanded or modified as required, depending on the application. Appropriate welding heads can be combined with suitable manipulators, which results in a total solution to a specific welding problem.

	Single SAW	Twin SAW	Single GMAW
Max load at 100% duty cycle, A	800	800	600
Wire feed, m/min	0.2-9	0.2-9	0.2-16

Welding automation Components and modules

A6 S Arc Master

The A6S Arc Master is the complete system for heavy production welding offering flexibility, operational reliability and durability. It constitutes the base of ESAB's automatic welding program with an extensive modular and component system. It is available in a number of standard models and can be adapted to suit the customer's specific demands. From an existing model, the A6 S can be rebuilt and extended to the required automation level, by means of positioning, joint tracking, flux handling and so on, as the requirements change.

A6 S Tandem Master

The A6 S Tandem Master is a highly versatile welding automat equipped with two A6 heads – for either DC/DC or DC/AC welding. Direct current provides good penetration, whereas alternating current secures a high deposition rate. The A6 S Tandem Master is available in a number of models to match the customer's safety, quality and productivity requirements.

	Single SAW, 156:1	Twin SAW, 156:1	Single SAW, 74:1	Twin SAW, 74:1	Single GMAW, 74:1
Max load at 100% duty cycle, A	1500	1500	1500	1500	600
Wire diameter, mm	3.0-6.0	2x2.0- 3.0	1.6-4.0	2x1.6- 2.0	0.8-3.2
Wire feed, m/	0.2-4.0	0.2-4.0	0.4-	0.4-8.0	0.8-16.6

	A6 S Tandem Master
Max load at 100% duty cycle, A	2x1500
Wire diameter, mm	2x3.0-6.0
Wire feed, m/min	0.2-4.0

Welding automation Power sources

LAF 631, 1001, 1251 and 1601

The LAF series are three phase, fan-cooled DC welding power sources designed for high productivity mechanised submerged or high productivity MIG/MAG arc welding. They are used in combination with ESAB's A2-A6 equipment range and the A2-A6 Process Controllers (PEK or PEI).

	LAF 631	LAF 1001	LAF 1251	LAF 1601
Mains supply, 3 ph 50 Hz, V	400/415	400/415/500	400/415/500	400/415/500
Mains supply, 3 ph 60 Hz, V	440	400/440/550	400/440/550	400/440/550
Max output at 60% duty cycle, A/V	800/44	1000/44	-	-
Max output at 100% duty cycle, A/V	630/44	800/44	1250/44	1600/44
Setting range, A/V, MIG/MAG	50/17-630/44	50/17-1000/45	60/17-1250/44	-
Setting range, A/V, SAW	30/21-800/44	40/22-1000/45	40/22-1250/44	40/22-1600/46
Open circuit voltage, V	54	52	51	54
No load power, W	150	145	220	220
Efficiency at max current	0.84	0.84	0.87	0.86
Power factor at max current	0.90	0.95	0.92	0.87
Enclosure class, protection	IP23	IP23	IP23	IP23
External dimensions, LxWxH, mm	670x490x930	646x552x1090	774x598x1428	774x598x1428
Weight, kg	260	330	490	585

Welding automation Column and boom / gantries

CaB 2200

- The Column & Boom CaB 2200 is purposely designed for light duty.
- A smooth 360-degree lockable rotation.
- Linear guidings on column and boom for smooth movement which makes it ideal for the MIG, TIG and SAW welding processes.
- Cable chain on column and boom.
- Movable carriage or fixed stand
- IP 55 pendant control station using low voltage on the generous 10 metre cable.
- A standard safety feature including anti-fall device and limit switches for all motions.
- Pay load of 70 kg.

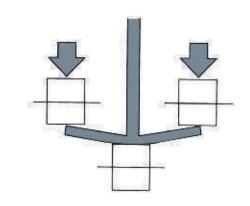
	CaB 2200
Mains supply, V/Hz	3x230/380/400/440 / 50/60
Vertical speed, mm/min	600
Boom Speed, mm/min	0-2050
Electrical Panel	IP 55
Rotation	Manual
Boom height max (a), mm	2500
Boom height min (a), mm	450
Boom height max (b), mm	2700
Boom extension max (c), mm	2500
Boom extension min (c), mm	490
Boom extension max (d), mm	2500
Boom extension min (d), mm	490
Wheel centre distance (e), mm	1600
Axle centre distance (f), mm	1500
Height of column (g), mm	3200

MechTrac 1730, 2100, 2500 and 3000

MechTrac might very well be the most flexible and fastest way to increase your productivity. The MechTrac is built as a gantry and can be equipped with an A2 welding equipment for SAW or MIG/MAG to create a complete welding station. If the workpiece rotates, other welding methods such as TIG and Plasma can be used, depending on the application and handling equipment. The MechTrac unit is suitable for different types of workpieces that can be covered by a gantry. The gantry offers the possibility to weld profiles such as I-, T-, or L-beams, columns or tapered beams. The MechTrac is available in four versions, depending on the size of the workpiece. The difference is the width of the gantry – 1730 mm, 2100 mm, 2500 mm or 3000 mm between the legs. The length of the legs is the same for all types, 1500 mm from the top of the rail to the inside of the overhead beam. The gantry can support a maximum weight of 220 kg, corresponding to a maximum of two A2 welding heads (single or twin wire) complete with automatic joint tracking GMH and an OPC flux recovery unit. The picture shows MechTrac equipped with A2 welding heads, Process Controller PEK and Power sources LAF 631.

	MechTrac 1730, 2100, 2500 and 3000
Travel speed, m/min	0.2-1.9
Rail length, m	3
Max load, kg	220

Welding automation Engineering


Beam welding

ESAB has more than 30 years' experience in the field of beam and profile welding. ESAB's beam and profile machines are equipped with the well-known and well-proven ESAB A6 system welding equipment. ESAB offers you a complete and effective way of welding beams and profiles. Whether you weld I-, T- or L-beams, wide flange beams, columns, tapered beams or non-symmetrical beams, ESAB has the know-how and the welding equipment to match your efficiency, quality, precision, versatility, productivity and overall welding economy requirements. The machines are of two types: IT-machines, where the beams are welded with the web unit in the vertical position, and I-machines, where the beams are produced in the horizontal position.

The main advantage of both machine types, apart from their high production capacity, is that the welding operation takes place when the flange and the web are pressed together under pressure in order completely to eliminate the gap between the surfaces. This ensures perfect weld quality. The IT-machines have a built-in straightening device which compensates for the pull-back of the flanges (see picture). ESAB's beam-welding machine program gives you the opportunity to choose the right type of equipment for your particular type of production. Total range of beam sizes that can be welded:

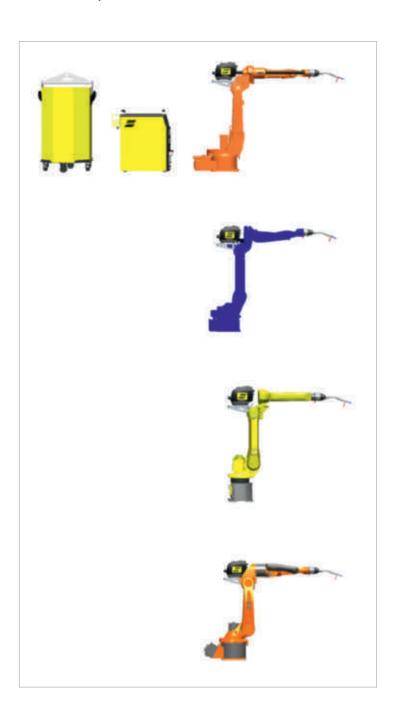
Machine type	Web	Flange
IT-258	200-2500 mm	100-800 mm
IT-158	200-1500 mm	100-800 mm

Aristo[®] Mig robot packages

ESAB Aristo® Mig robot packages, provide robot suppliers and integrators with superior welding technology that is easy to install and use, both for new welding robots and for retrofitting.

The ESAB Aristo® Mig process package is available through robot suppliers and integrators and can be used for almost all robotic applications. It can be connected to different type of robots for new installations as well as for retrofitting existing installations.

High tech welding equipment


The Aristo® Mig process package (with ESAB Canbus technology) offers a choice of Aristo® Mig inverter-based power

sources, encapsulated and non-encapsulated, robot-mounted wire feeders, interfaces and the AristoPendant U8₂ control box. The interface with the robot controller can be achieved with analogue/digital I/O communication or via DeviceNet, Profibus or CANopen. The package includes high quality welding wires supplied in ESAB MarathonPac™ bulk drums.

The different ESAB robot packages are described on the following pages.

Aristo[®] packages for hollow wrist robots

Standard Packages are available in different configurations for ABB, Motoman, Fanuc and Kuka.

Example 1

Package for IRB 1520ID Air-cooled.

- Mig 5000i & W8₂ Integrated & Safety and interlock set.
- Control cable 7.5 m (ESAB-ABB).
- Aristo® RoboFeed 3004 HW.
- Aristo[®] FeedControl HW.
- Feeder and cable routing installation kit cpl. for ABB IRB 1520ID.
- Interconnection cable PS drive unit 5 m.
- Cable PAL 3 / W8_a.
- Aristo® RT Infiniturn torch with torch neck 22°, torch mount and adapter.*

Example 2

Package for IRB 1520ID Water-cooled.

- Mig 5000iw(400V) & W8₂ & safety and interlock cable.
- Control cable 7.5 m (ESAB-ABB).
- Aristo® RoboFeed 3004 HW.
- Aristo® FeedControl HW.
- Feeder and cable routing installation kit cpl. for ABB IRB 1520ID.
- Interconnection cable PS drive unit 5 m w.
- Cable PAL 3 / W8,
- RTw Infiniturn torch with torchneck 22°, torch mount and adapter.*

Option:

Stand alone bobbin holder complete with 4.5 m MarathonTM Pac hose.

* Other type of torch neck on demand.

Aristo[®] packages for non hollow wrist robots

Standard packages are available in different configurations for ABB, Motoman, Fanuc and Kuka.

Example 3

Air-cooled Mig 4002c Devicenet for IRB 2600.

- Mig 4002c.
- Aristo[®] U8₂.
- Extension cable 7.5 m.
- Aristo® W8, Devicenet.
- Interconnection cable W8, to choppers.
- Connection cable 10 m W8,/robotcabinet.
- Aristo® RoboFeed 3004w 12p ELP.
- Aristo® RT torch with torch neck 22° and torch mount and adapter.
- Assembly bracket for IRB 2600.
- Cable set power source wire feeder, 'high end version' 10m, incl. clamp & Reiku.
- Mounting bracket for the 'high end' cable set with the Raiku hose for IRB 2600.

Example 4

Water-cooled Mig 4002cw Devicenet for IRB 2600.

- Mig 4002cw.
- Water flowguard chopper.
- Aristo® U8, .
- Extension cable 7,5 m.
- Aristo® W8, Devicenet.
- Interconnection cable W8, to choppers.
- Connection cable 10 m W8,/robotcabinet.
- Aristo® RoboFeed 3004w 12p ELP.
- Aristo® RTw torch with torch neck 22° and torch mount and adapter.
- Assembly bracket for IRB 2600.
- Cable set power source wire feeder, 'high end version' 10 m, incl. clamp & Reiku.
- Mounting bracket for the 'high end' cable set with the Raiku hose for IRB 2600.

Option:

Stand alone bobbin holder complete with 4.5 m Marathon $^{\text{TM}}$ Pac hose.

Aristo® RT robotic torches and accessories

Characteristics

- Robust and powerful
- Precision torch interface
- torch exchange
- use for all applications
- Modular system: choose from different geometries and torch types

Aristo® RT air-cooled

Aristo® RT 42G 60% (10 min.)

Mix: 8.8 kW (250 - 280 A) Ø 0.8 - 1.2 mm Gas flow: from 8 I/min 1 channel for protective or blow-out gas

Aristo® RT 52G

60% (10 min.) Mix: 10.5 kW (300 - 320 A) Ø 0.8 - 1.6 mm Gas flow: from 8 I/min 1 channel for protective or blow-out gas

Aristo® RT 62G

80% (10 min.) Mix: 15.0 kW (350 - 400 A) Ø 0.8 - 1.6 mm Gas flow: from 6 I/min 2 channels for protective or blow-out gas

Engineering the details

As with all ESAB products, also for our robot torches the following holds true: The detail solution determines the functionality and quality of the whole product.

With the development of our robot torches, we have set ourselves a high goal. After a lot of testing, we succeeded in creating a product with extraordinary lifetime, good cooling and mechanical durability, finally reaching our design goals. Of course, while maintaining the excellent price / performance ratio that our clients are accustomed to.

Aristo® RT water-cooled

Aristo® RT 42W

100% (10 min.) Mix: 9.5 kW (270 -300 A) Ø 0.8 - 1.2 mm Gas flow: from 8 I/min 1 channel for protective or blow-out gas

Aristo® RT 52W

100% (10 min.) Mix: 13.0 kW (350 - 370 Mix: 17.5 kW (370 -Ø 0.8 - 1.6 mm Gas flow: from 8 I/min 1 channel for protective or blow-out gas 2-circuit water cooling

Aristo® RT 62W

100% (10 min.) 500 A) Ø 0.8 - 1.6 mm Gas flow: from 6 I/min 2 channels for protective or blow-out gas 2-circuit water cooling

Range of cable assemblies to suite your robot.

Robotic torches Aristo® RT tandem torch, cleaning devices and safety switches

Technical data Aristo® RT tandem torch

Rating at 100% duty cycle

(10 min. cycle)

Mixed gas 2 x 550 A

Cooling method 3-circuit water cooling

Wire diameter 1.0 – 3.2 mm

Distance between wire 10 mm with a stick-out of 20 mm (standard). electrodes Other distances are possible on request.

Gas flow max. 30 I /min

Blow-out function max. 10 bar, protective gas channel

separated by check valve

Weight (without cables) approx. 2.8 kg

Technical specification according to IEC 60974-7

Options - wire run-in button on the torch

- Push-pull system

Torch rating will be reduced when using pulsed-arc power sources. For heavy-duty use of the torch, it is highly recommended to use 3 separate water coolers, or a refrigerator unit.

JetStream RT cleaning station

Torch cleaning station. The particle stream cleans the whole torch head, even the parts which are normally hard to reach! The therewith resulting increase in productivity of the robot cell guarantees a quick amortization of the system.

RG 2000 Automatic torch cleaning station.

Safety switches

Range of safety switches and brackets to mount the torch on ABB Motoman Kuka Fanuc robots.

ESAB special welding processes SATTM - MAG welding at very high travel speed

ESAB Swift Arc Transfer (SAT™) is a high productivity MAG process that utilises AristoRod™ non-copper coated wires at travel speeds well beyond the limits of normal spray arc welding.

SATTM produces flat welds with a good penetration and without undercut. An additional advantage is the low heat input, resulting in less deformation. SATTM is developed for robotic, automated and mechanised welding. It is suited for fillet and overlap welds in thin to thick plate, in downhand positions.

SATTM is based on the use of ESAB OK AristoRodTM non-copper coated MAG wire with Advanced Surface Characteristics - the benchmark product in the European transportation industry. The absence of contamination of the feed system with copper particles and the special surface finish results in dependable feeding properties and a stable arc at high welding currents/wire feed speeds.

- A stable process at very high welding speed.
- Excellent weld appearance.
- A good weld penetration.
- Low heat input and low deformation.
- Excellent spatter-free arc ignition due to the use of ESAB SoftStart.
- Less post weld labour, due to limited spatter and deformation.
- Suited for thin up to thick materials with a single parameter setting.
- Easy to implement common torch positions, normal stickout length.
- Very low amount of silicates.

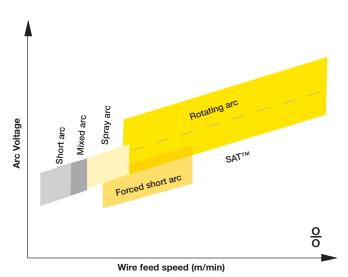
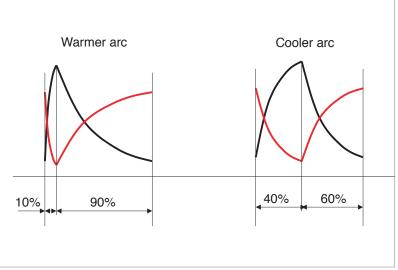
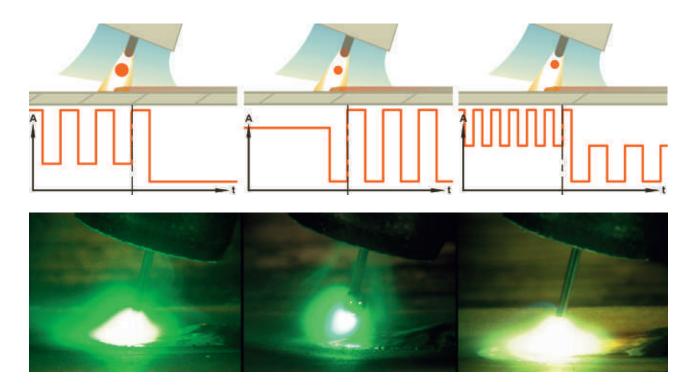


Table 1. SAT[™] parameters for different wire sizes and four deposition rate levels. The yellow area shows the welding current limits. Fillet welds in PB position.


Ø (mm)	8.0	0.9	1.0	1.2	Deposition rate (kg/h)
Wfs (m/min.)	25	20	16	11	5.9
I (A)	220	230	240	230	
Wfs (m/min.)	32	25	20	14	7.4
I (A)	260	270	300	400	
Wfs (m/min.)	35	27	22	15.5	8.1
I (A)	255	285	330	460	
Wfs (m/min.)		30	25	17.5	9.2
I (A)		348	375	500	

ESAB special welding processes QSet[™] - short arc welding with a single button

QSet™ is an innovation set to change short arc welding - forever. A push on the QSet™ button, and a few seconds of test welding, is all it takes to find optimal short arc parameter settings - automatically! Benefits include savings in time and improved weld quality.


With QSet™, by pushing one single button, the machine automatically selects the optimal short circuit frequency for the gas/ wire combination installed, which is maintained when the welder adapts the wire feed speed to the level required for the application. It just needs a few seconds of test welding. The same procedure is repeated when changing wire type or diameter and/or shielding gas and the machine will, again, find the optimal arc setting. It couldn't be easier! Welders will save valuable time in arc setting and can concentrate energy and skills on producing the perfect weld. Time will also be saved on weld cleaning - the curse of even the best welders! - because the ideal arc setting will reduce spatter to an absolute minimum. ESAB has introduced QSet™ installed on a 300 A inverter in a compact version, the Mig C3000i with MA23A panel. It is now also available for Mig 3001i, 4001i, 4002c, 5002c and 6502c, Aristo® Mig U4000i, 5000i and U5000i power sources with OrigoFeed™ 3004 and MA24 panel or Aristo® Feed and U6 or U8, panel. QSet™ artificial intelligence in welding can be used with our complete bus controlled inverter and chopper range.

With QSet™, the ratio of arc time and short circuit time can be adjusted to obtain a warmer arc, while the short circuit frequency remains the same.

ESAB special welding processes Full control over heat input with Aristo® SuperPulse™

Aristo® SuperPulse is a further development of the pulse/pulse concept, giving full control over the heat input and thereby expanding the scope of application of the MIG process. In addition to pulse/pulse, the following arc mode combinations and applications are possible:

- Pulse/short arc. Enables the welding of very thin sheet metal. Productive welding of root passes replacing the TIG process.
- Spray arc/pulse. A very efficient arc mode for positional welding of thick materials.
 Aluminium can be welded straight upwards, without weaving.
- MIG brazing of very thin sheet material.

Aristo® SuperPulse brings the following general benefits:

- Easier positional welding.
- Uniform penetration.
- Less sensitive for root gap variations.

- Less sensitive for unequal heat transfer.
- TIG weld appearance with the MIG process.
- Suitable for mechanisation, e.g. with Railtrac and Miggytrac.
- Extends the working range for larger wire sizes.
- With its precisely adjustable heat input and depth of penetration
 Superpulse can solve difficultest welding tasks and increase productivity.

ESAB special welding processes Hybrio[™] laser hybrid technology

The introduction of ESAB's fifth generation Hybrio[™] technology launches a new era in advanced welding.

Combining the key benefits of laser and gas metal arc welding (GMAW), hybrid laser welding delivers multiple gains, such as radically higher welding speeds, a dramatic reduction in consumable consumption, enhanced mechanical properties, reduced joint volumes and heat input and greatly reduced part distortion.

Transportation vehicles of all types, from rail to autos to ships, can use hybrid welding in combination with high performance materials, to reduce weight and distortion while enhancing vehicle performance.

Hybrid welding is not for everyone. It may mean adjusting cutting/machining operations and require changes to down-stream operations, to fully benefit from the substantial productivity, quality and cost-efficiency gains.

Successful implementation assumes access to qualified engineering and technical staff. And introducing such a game-changing new process demands serious investment, not only in terms of resources, but in total commitment from senior management. For those with the right industrial and product profile, though, the potential gains are huge.

Because ESAB is so much more than 'just' an equipment supplier. A respected R&D powerhouse in its own right, ESAB works intimately with end-customers, OEMs and system integrators to achieve optimal welding solutions. This goes beyond the practical and technical challenges, to embrace life-cycle cost and environmental

sustainability. As an ESAB customer, you acquire a powerful industrial consultant and partner.

And Why Hybrio™?

ESAB's Hybrio™ technology leads the industry in ease of use and process reliability. The technology can be supplied as a fully-integrated turnkey ESAB welding system, or made available to machine tool OEMs and system integrators as a process package. Customers always have access to the company's comprehensive hybrid welding expertise, with the full support of ESAB Laser Process Centers in North America and Europe.

ESAB special welding processes 2D and 3D friction stir welding machines and robots

Friction Stir Welding (FSW) has been used for the high quality joining of aluminium since its invention in the early 1990's. The superior joint quality results from a solid-state procedure, where no filler material or shielding gas is used. The joint is the result of a rotating tool being forced into the material and traversed along the joint line. The material, suppressed by the tool's shoulder, becomes plastic and reforms homogenously leaving a solid bond between the two pieces.

The technique was developed at TWI (The Welding Institute) in the early 1990's, when ESAB joined a group-sponsored project aiming to develop the process.

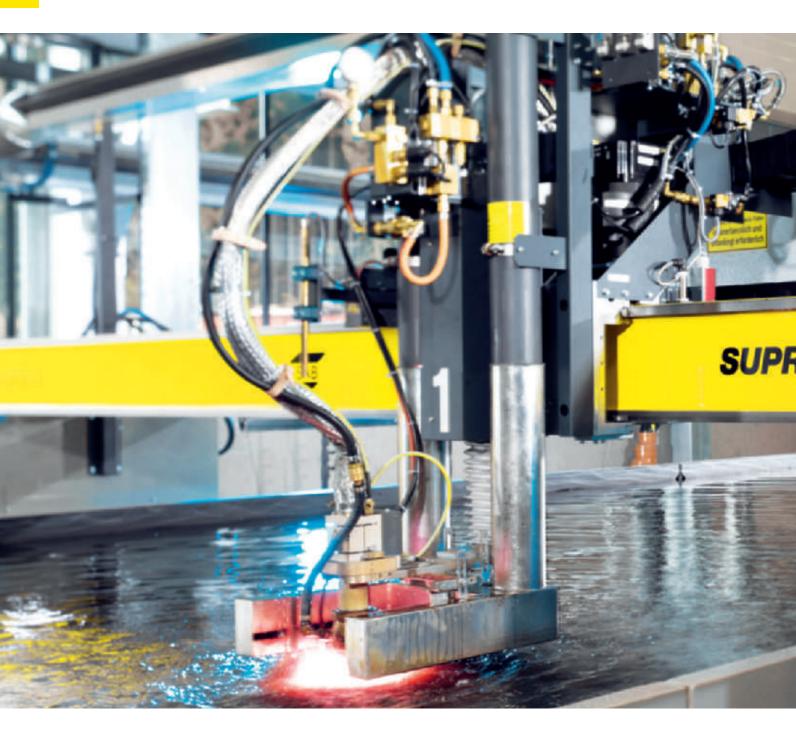
Commercialisation of the process started a few years later with successful use of ESAB installations at Marine Aluminium (Haugesund, Norway), in 1996, and at Boeing (Wichita, Kansas, USA), in 1998.

FSW has gained a sound reputation within the welding community as an easy-to-use, defect-free process, although limited to 2D welds as in ship panels.

The joining of multidimensional joints remained a challenge for friction stir welding (FSW). This is because machines are predominantly built to manage process requirements rather than enabling motion flexibility. ESAB's research and development lead to the succesful launch of the latest member of the ESAB FSW family: Rosio[™] robotic friction stir welder for 3D weldments.

One of the early users of robotic FSW is the automotive industry, where relatively soft aluminium alloys - AA5000 and AA6000-series - are used in thicknesses under 3mm.

Figure 1. Welding tests on Rosio™ Friction Stir Welding robot.



Applications for Rosio™: Tailor-welded blanks, FSW processing, joining of cooling blocks.

Your complete cutting solution from the same supplier

- Cutting machines from 2 to 36m machine width
- Filter systems.
- · Cutting tables.
- Plasma system solutions from 1 to 120mm cutting thickness.
- Specialised cutting software and easy to operate CNC controllers.
- High duty oxy fuel cutting equipment.
- Tools for automated weld-edge preparation.

Cutting systems

More than 70 years' experience of cutting and responding to customers needs have resulted in an extensive range of products. The traditional thermal cutting technologies such as plasma, oxy-fuel and laser cutting

have been joined by the newer waterjet cutting technology. Marking, signing, lettering, punching, shot blasting, surface cleaning, drilling and powerful software tools completes the cutting product family.

Personal protective equipment

The Aristo® Tech

The Aristo® Tech helmet has been designed for the professional welder who wants the best in protection and performance. The light weight shell and ergonomically designed headgear offers maximum comfort even when welding for long periods of time. The Aristo® Tech offers the latest in digital lens technology, with internal LCD display, providing the welder full control to adjust shade level, sensitivity and delay settings with precision for any welding application. Three high gloss colours available – yellow, black & white.

Aristo® Tech helmets prepared for fresh air

The Aristo® Tech helmet can be used in combination with the Aristo® Air PAPR unit and compressed air. The helmets are delivered fully assembled, incl. flame resistant head and face seal and air duct.

Globe-Arc

The Globe-Arc is a unique design in flip front welding and grinding helmets. The visor provides effective protection from UV and IR radiation when the visor is both open and closed, and is available in different shade levels. The helmet is equipped with a strong and comfortable head gear.

ESAB Filtair Pro 8020CV

This mask provide P2 protection and is equipped with a valve to reduce heat and moisture build up inside the respirator. The carbon layer takes out bad odours. Suitable to wear during welding, brazing, soldering, painting (brush applied), gluing (brush applied) and polyester resins (hand mix).

ESAB Pro Clear

The clear lens is suitable when working indoors, providing general eye protection.

Welding Jackets

The ESAB Proban/leather jackets are designed for maximum comfort and safety. The sleeves and shoulders are made in durable grade A leather to withstand the exposure to welding spatter. The front and back is made from flame retardant Proban material. The garment feature concealed inner pockets, adjustable sleeves and a stand up collar. Kevlar stitched.

ESAB Curved MIG Glove

These superior new welding gloves from ESAB offer a whole new approach to fit, form and function. Ergonomically designed to fit the natural curve of the hand, offering increased quality & comfort to the wearer. The MIG glove is made from heavy & fine cut leather, and is lined from hand to cuff. With the curved design the glove fits the hand perfectly, and also has a flexible wrist area which reduces friction. With welted seams, kevlar stitching & reinforced thumb, the glove is very strong and offers a very high level of protection to the wearer.

Welding Blanket 5180

A carbon fibre felt welding blanket for heavy duty applications. This blanket offers extreme heat resistance of 1650°C. The 5180 is extremely light and simple to clean and it's been designed for the automotive industry. Maximum temp. = 1300°C, Weight = 425 g, Colour = Black.

Special Marathon Pac and wire feedability accessories

Direct pull kit with ceramic inlet prevents wire shaving.

Quick disconnect insulator.

Marathon Pac drum cover

- Constructed of tough polyethylene for long shop life.
- Dual windows provide easy access and viewing.
- Built-in anchors to secure drum hood to Marathon Pac.
- Lifetime guarantee against breakage.

Resistance butt welders

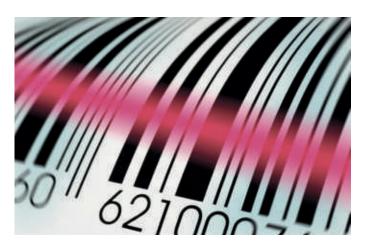
Various butt welder types available for endless Marathon Pac; docking station, stand alone version and portable version.

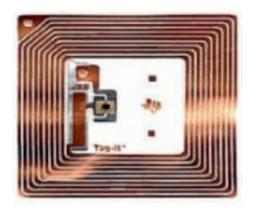
Extra flexible conduit

- Elliptical, smooth-coated wire liners reduce friction and wire shaving.
- Spatter resistant outer jacket.
- Ideal for robotic applications.
- Available in four standard lengths & three diameters.
- Standard conduit sizes available in color-coded cut lengths with attached bayonets.

Roller module features

- Eliminates friction on the wire in areas where bends/ corners are necessary throughout the wire dispensing system.
- Each module contains a series of rollers with bearings, allowing the wire to easily feed around turns.
- Allows long distance conduit runs.
- 45° modules may be connected together to form a 90° turn, 135° turn, 180° turn or S-shape.
- Mounts to the drum hood, on the weld cell or in-line.
- Compatible with both ferrous & non-ferrous wire.
- Two sizes available (standard wire / large wire version).



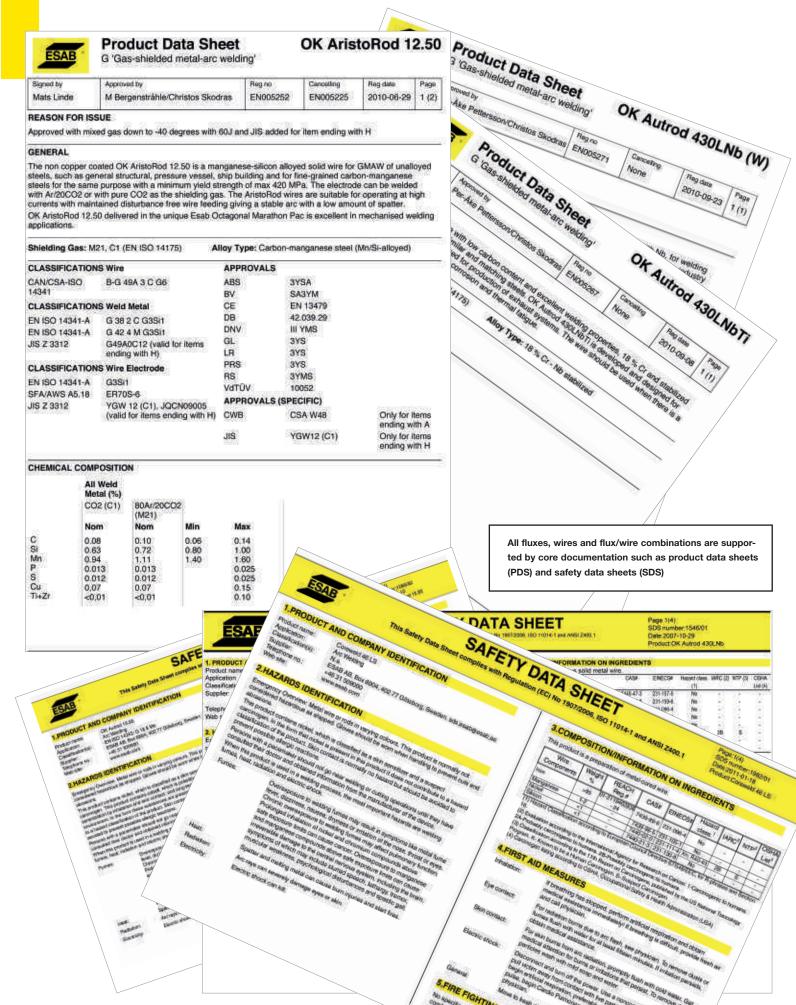


Wire guide module accessories

Guide module swivel kit, allows 360° rotation.

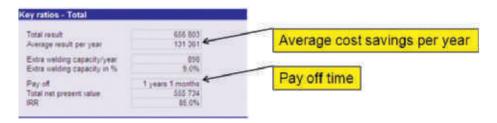
Get smarter with SMART labels

No more human errors with RFID - labels


RFID (Radio Frequency Identification) is a suitable technology to automatically acquire information. The new RFID will be integrated in the standard packaging label to allow standard bar-code reading and/or RFID scanning with a relevant device. RFID labels have the following features:

- Contains information related to the filler metal grade, quantity in the package and diameter of the wire – according to the ISO 15693 common functionalities.
- Will send a Go/No Go signal to the robotic cell.
- Will be launched with all 16.95 and 16.76 OMP.
- Can be used for active monitoring of the wire consumption.
- Once integrated with the customers ERP system, it can be used to automatically re-order products from the supplier.
- Can send a signal to the stores/warehouse and request an internal delivery of a new drum for the station avoiding unnecessary stoppage.

Product documents


Find out what's below the waterline of your welding costs

Would you like to add value to your business and thus improve your profitability? With our value added services we can deliver enhanced opportunities to our customers by helping them to improve their business performance, competitiveness and productivity. Our "expert eyes" can help you review your current production, welding or cutting operation in search for the most optimum solution. A profitability survey is a key milestone in the design of our value added service offer. We use a total economy approach which allows us to identify both the visible and hidden costs in your production. By applying the profitability survey directly in your production we can identify cost reduction opportunities and develop exceptional value added welding and cutting solutions designed to meet your individual needs.

Our expert technical team is at your disposal to perform the profitability survey adding value to your business by identifying the following:

otal results - differences	2011	2012	2013	2014	2015	Sum
increased profits due to increased sales	120 000	120 000	120 000	120 000	120 000	600 000
Change - Consumables and medias costs	-3 401	-3 401	-3 401	-3 401	-3 401	-17.000
Change - Personnel costs	61 685	61 685	61 685	61 685	61 685	308 424
Change - Other costs production	0	0	0		0	
Change - Repair, maintenance and logistics costs	0	0	0	0	0	11
Change - Administration, environment and various cos	0	0	0	0	0	- 01
Change - Investment costs	-61 538	49 231	-46 923	-44-615	-42 300	-234 615
Total results	125 745	129 053	131 361	133 668	135 976	656 80.
Difference in welding capacity	999:	090	090	090	810	4.40
Extra welding capacity	9.0%	9.0%	9.0%	9,0%	9.0%	9.0%
Freed time per year (h)	3.209	3 299	3 299	3 299	3 229	16 446

The true source of cost reductions with:

- · Improved productivity
- · Better total economy
- · Improved quality

New opportunities to increase revenues with:

- · Increased capacity
- · Extra product sales
- · The growth of your employees productivity

New areas for reduced working capital with:

- · Optimized product mix
- · Higher stock turn over
- · Optimized material stock level

R&D, Central Laboratory and Process Centres

ESAB Central Laboratories

The ESAB Central laboratories in Gothenburg, Sweden, together with the Process Centre, form the technical heart of ESAB worldwide. Equipped with modern facilities, they provide research services to the development departments, to production sites and to end customers.

The several laboratories are:

- Metallographic laboratory
- · Mechanical testing
- Chemical laboratory
- Welding laboratory
- Heat treatment laboratory

Principal activities are:

- Customer support:
 Defects, properties, welding procedures, failure analysis.
- Development support:
 Microstructure and properties for

development and improvement of products.

- Research: Internal and external (universities, institutes) research projects.
- Production support:
 Verification of product quality and production processes.

ESAB worldwide organisation of Welding Process Centres consists of fully equipped, multifaceted training and development facilities, specifically designed for advanced process and welding application support to customers.

Our focus is to help our clients become more competitive by optimising the quality and efficiency of their welding applications and processes – for best possible welding economy – through application research, expert advice and training.

Production facility certificates

World leader in welding and cutting technology and systems.

ESAB operates at the forefront of welding and cutting technology. Over one hundred years of continuous improvement in products and processes enables us to meet the challenges of technological advance in every sector in which ESAB operates.

Quality and environment standards

Quality, the environment and safety are three key areas of focus. ESAB is one of few international companies to have achieved the ISO 14001 and OHSAS 18001 standards in Environmental, Health & Safety Management Systems across all our global manufacturing facilities.

At ESAB, quality is an ongoing process that is at the heart of all our production processes and facilities worldwide.

Multinational manufacturing, local representation and an international network of independent distributors brings the benefits of ESAB quality and unrivalled expertise in materials and processes within reach of all our customers, wherever they are located.

ESAB AB

Box 8004, SE-402 77 Göteborg, Sweden. Phone: +46 31 50 90 00. Fax: +46 31 50 93 90.

E-mail: info@esab.se **www.esab.com**